2025年悦然好学生必开卷九年级数学全一册华师大版长春专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年悦然好学生必开卷九年级数学全一册华师大版长春专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年悦然好学生必开卷九年级数学全一册华师大版长春专版》

第208页
17. (6分)已知二次函数$y = ax^{2} - c$,当$x = 2$时,$y = 4$;当$x = - 1$时,$y = - 3$.
(1)求$a,c$的值;
(2)当$x = 4$时,求二次函数$y = ax^{2} - c$的值.
答案: 17.
(1)把$x = 2 , y = 4$和$x = - 1 , y = - 3$分别代入
$y = a x ^ { 2 } - c$,得$\begin{cases}4a - c = 4,\\a - c = - 3,\end{cases}$解得$\begin{cases}a = \frac{7}{3},\\c = \frac{16}{3}.\end{cases}$
(2)由
(1)得$y = \frac { 7 } { 3 } x ^ { 2 } - \frac { 1 6 } { 3 }$,
将$x = 4$代入,得$y = \frac { 7 } { 3 } × 4 ^ { 2 } - \frac { 1 6 } { 3 } = 3 2$.
18. (7分)抛物线$y = - x^{2} + 2x + 3$如图所示,已知$A( - 1,0),B(3,0),C(0,3)$.
(1)连结$AC,BC$,则$S_{\bigtriangleup ABC} =$
6

(2)抛物线上存在点$C^{\prime}$使得$S_{\bigtriangleup ABC^{\prime}} = S_{\bigtriangleup ABC}$,求点$C^{\prime}$的坐标.
答案: 18.
(1)6
(2)当$y = 3$时,$3 = - x ^ { 2 } + 2 x + 3$,
解得$x$_________${ 1 } = 0$(舍去),$x$_________${ 2 } = 2$,点$C'$的坐标为(2,3).
当$y = - 3$时,$- 3 = - x ^ { 2 } + 2 x + 3$,
解得$x$_________${ 1 } = 1 + \sqrt { 7 }$,点$C'$的坐标为$(1 + \sqrt { 7 } , - 3 )$;
$x$_________${ 2 } = 1 - \sqrt { 7 }$,点$C'$的坐标为$(1 - \sqrt { 7 } , - 3 )$.
综上,点$C'$的坐标为(2,3)或$(1 + \sqrt { 7 } , - 3 )$或$(1 - \sqrt { 7 } , - 3 )$.
19. (7分)[2024 北京]在平面直角坐标系$xOy$中,已知抛物线$y = ax^{2} - 2a^{2}x(a \neq 0)$.
(1)当$a = 1$时,求抛物线的顶点坐标.
(2)已知$M(x_{1},y_{1})$和$N(x_{2},y_{2})$是抛物线上的两点.若对于$x_{1} = 3a$,$3 \leq x_{2} \leq 4$都有$y_{1} < y_{2}$,求$a$
的取值范围.
答案: 19.
(1)将$a = 1$代入$y = a x ^ { 2 } - 2 a ^ { 2 } x$,
得$y = x ^ { 2 } - 2 x = ( x - 1 ) ^ { 2 } - 1$,
$\therefore$顶点坐标为(1,-1).
(2)由题意得$y$_________${ 1 } = a · ( 3 a ) ^ { 2 } - 2 a ^ { 2 } · 3 a = 3 a ^ { 3 }$,
$y$_________${ 2 } = a x$_________${ 2 } ^ { 2 } - 2 a ^ { 2 } x$_________${ 2 }$.
$\because y$_________${ 1 } < y$_________${ 2 }$,
$\therefore y$_________${ 2 } - y$_________${ 1 } = a ( x$_________${ 2 } ^ { 2 } - 2 a x$_________${ 2 } - 3 a ^ { 2 } )$
$= a ( x$_________${ 2 } - 3 a ) ( x$_________${ 2 } + a ) > 0$.
①当$a > 0$时,$( x$_________${ 2 } - 3 a ) ( x$_________${ 2 } + a ) > 0$,
$\therefore\begin{cases} x$_________${ 2 } - 3 a > 0 , \\ x$_________${ 2 } + a > 0 , \end{cases}$或$\begin{cases} x$_________${ 2 } - 3 a < 0 , \\ x$_________${ 2 } + a < 0 , \end{cases}$
解得$x$_________${ 2 } > 3 a$或$x$_________${ 2 } < - a$.
$\because 3 \leq x$_________${ 2 } \leq 4$,
$\therefore 3 a < 3$或$- a > 4$,
$\therefore a < 1$或$a < - 4$.
$\because a > 0$,
$\therefore 0 < a < 1$;
②当$a < 0$时,$( x$_________${ 2 } - 3 a ) ( x$_________${ 2 } + a ) < 0$,
$\therefore\begin{cases} x$_________${ 2 } - 3 a > 0 , \\ x$_________${ 2 } + a < 0 , \end{cases}$或$\begin{cases} x$_________${ 2 } - 3 a < 0 , \\ x$_________${ 2 } + a > 0 , \end{cases}$
解得$3 a < x$_________${ 2 } < - a$.
$\because 3 \leq x$_________${ 2 } \leq 4$,
$\therefore\begin{cases} 3 a < 3 , \\ - a > 4 , \end{cases}$解得$a < - 4$.
综上,$0 < a < 1$或$a < - 4$.

查看更多完整答案,请扫码查看

关闭