2025年悦然好学生必开卷九年级数学全一册华师大版长春专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年悦然好学生必开卷九年级数学全一册华师大版长春专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年悦然好学生必开卷九年级数学全一册华师大版长春专版》

第202页
22. (9分)如图,两条抛物线$y_1 = -x^2 + 4$,$y_2 = -\frac{1}{5}x^2 + bx + c$相交于$A$,$B$两点,点$A$在$x$轴负半轴上,且为抛物线$y_2$的最高点.
(1)求抛物线$y_2$的表达式和点$B$的坐标;
(2)点$C$是抛物线$y_1$上$A$,$B$之间的一点,过点$C$作$x$轴的垂线交$y_2$于点$D$,当线段$CD$取最大值时,求$S_{\triangle BCD}$.
答案: 22.
(1)当$y_1 = 0$时,$-x^2 + 4 = 0$,
解得$x = 2$或$x = -2$,
又点A在$x$轴负半轴上,
$\therefore A(-2,0)$.
$\because$点A$(-2,0)$是抛物线$y_2$的最高点,
$\therefore \frac{b}{2 × (-\frac{1}{5})} = -2,\therefore b = -\frac{4}{5}$.
把A$(-2,0)$代入$y_2 = -\frac{1}{5}x^2 - \frac{4}{5}x + c$,
解得$c = -\frac{4}{5}$,
$\therefore$抛物线$y_2$的表达式为$y_2 = -\frac{1}{5}x^2 - \frac{4}{5}x - \frac{4}{5}$.
由$\begin{cases} y = -x^2 + 4, \\ y = -\frac{1}{5}x^2 - \frac{4}{5}x - \frac{4}{5}, \end{cases}$
解得$\begin{cases} x_1 = -2, \\ y_1 = 0, \end{cases} \begin{cases} x_2 = 3, \\ y_2 = -5. \end{cases}$
$\because A(-2,0),\therefore B(3,-5)$.
(2)由题意得$CD = y_1 - y_2 = -x^2 + 4 - (-\frac{1}{5}x^2 - \frac{4}{5}x - \frac{4}{5})$,
即$CD = -\frac{4}{5}x^2 + \frac{4}{5}x + \frac{24}{5}$.
当$x = \frac{1}{2}$时,$CD$最大$= -\frac{4}{5} × \frac{1}{4} + \frac{4}{5} × \frac{1}{2} + \frac{24}{5} = 5$,
$\therefore S_{\triangle BCD} = \frac{1}{2} × 5 × (3 - \frac{1}{2}) = \frac{25}{4}$.

查看更多完整答案,请扫码查看

关闭