2025年名师帮同步学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师帮同步学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师帮同步学案九年级数学全一册人教版》

第4页
一、新课学习
A. 形如$x^{2}= p(p≥0)$,直接开平方法可得
$ x = \pm \sqrt{p} $
.
B. 形如$ax^{2}= p(a>0,p≥0)$,则
$ x = \pm \sqrt{\frac{p}{a}} $
.
C. 形如$(mx+n)^{2}= p(p≥0)$,则$mx+n= $
$ \pm \sqrt{p} $
.
答案: A. $ x = \pm \sqrt{p} $ B. $ x = \pm \sqrt{\frac{p}{a}} $ C. $ \pm \sqrt{p} $
1. 方程$x^{2}= 16$的解为
$ x = \pm 4 $
.
答案: $ x = \pm 4 $
2. 方程$4x^{2}= 1$的解为
$ x = \pm \frac{1}{2} $
.
答案: $ x = \pm \frac{1}{2} $
3. 方程$(2x - 3)^{2}= 9$的解为
$ x_1 = 3, x_2 = 0 $
.
答案: $ x_1 = 3, x_2 = 0 $
【例题1】用直接开方法解方程.
(1)$x^{2}= 25$;
解:将方程两边开方,
解得 $ x = \pm \sqrt{25} $,
$ \therefore x_1 = $
5
$, x_2 = $
-5
;
(2)$x^{2}-12= 0$.
解: $ x^2 = $
12
,
将方程两边开方,
解得 $ x = \pm \sqrt{12} $,
$ \therefore x_1 = $
$2\sqrt{3}$
$, x_2 = $
$-2\sqrt{3}$
.
答案:
(1)解:将方程两边开方,
解得 $ x = \pm \sqrt{25} $,
$ \therefore x_1 = 5, x_2 = -5 $;
(2)解: $ x^2 = 12 $,
将方程两边开方,
解得 $ x = \pm \sqrt{12} $,
$ \therefore x_1 = 2\sqrt{3}, x_2 = -2\sqrt{3} $.
【变式1】用直接开方法解方程.
(1)$x^{2}= 3$;
解:将方程两边开方,
解得 $ x = $
$\pm \sqrt{3}$
,
$ \therefore x_1 = $
$\sqrt{3}$
, $ x_2 = $
$-\sqrt{3}$
;
(2)$y^{2}-9= 0$.
解: $ y^2 = $
9
,
将方程两边开方,
解得 $ y = $
$\pm \sqrt{9}$
,
$ \therefore y_1 = $
3
, $ y_2 = $
-3
.
答案:
(1)解:将方程两边开方,
解得 $ x = \pm \sqrt{3} $,
$ \therefore x_1 = \sqrt{3}, x_2 = -\sqrt{3} $;
(2)解: $ y^2 = 9 $,
将方程两边开方,
解得 $ y = \pm \sqrt{9} $,
$ \therefore y_1 = 3, y_2 = -3 $.
【例题2】用直接开方法解方程.
(1)$9x^{2}= 4$;
解: $ x^2 = $
$\frac{4}{9}$
,
将方程两边开方,
解得 $ x = \pm \sqrt{}$
$\frac{4}{9}$
,
$ \therefore x_1 = $
$\frac{2}{3}$
, $ x_2 = $
$-\frac{2}{3}$
;
(2)$16x^{2}-49= 0$.
解: $ x^2 = $
$\frac{49}{16}$
,
将方程两边开方,
解得 $ x = \pm \sqrt{}$
$\frac{49}{16}$
,
$ \therefore x_1 = $
$\frac{7}{4}$
, $ x_2 = $
$-\frac{7}{4}$
.
答案:
(1)解: $ x^2 = \frac{4}{9} $,
将方程两边开方,
解得 $ x = \pm \sqrt{\frac{4}{9}} $,
$ \therefore x_1 = \frac{2}{3}, x_2 = -\frac{2}{3} $;
(2)解: $ x^2 = \frac{49}{16} $,
将方程两边开方,
解得 $ x = \pm \sqrt{\frac{49}{16}} $,
$ \therefore x_1 = \frac{7}{4}, x_2 = -\frac{7}{4} $.
【变式2】用直接开方法解方程.
(1)$25x^{2}= 9$;
解: $ x^2 = $
$\frac{9}{25}$
,
将方程两边开方,
解得 $ x = \pm $
$\sqrt{\frac{9}{25}}$
,
$ \therefore x_1 = $
$\frac{3}{5}$
, $ x_2 = $
$-\frac{3}{5}$
;
(2)$6x^{2}-12= 0$.
解: $ 6x^2 = $
12
, $ x^2 = $
2
,
将方程两边开方,
解得 $ x = \pm $
$\sqrt{2}$
,
$ \therefore x_1 = $
$\sqrt{2}$
, $ x_2 = $
$-\sqrt{2}$
.
答案:
(1)解: $ x^2 = \frac{9}{25} $,
将方程两边开方,
解得 $ x = \pm \sqrt{\frac{9}{25}} $,
$ \therefore x_1 = \frac{3}{5}, x_2 = -\frac{3}{5} $;
(2)解: $ 6x^2 = 12, x^2 = 2 $,
将方程两边开方,
解得 $ x = \pm \sqrt{2} $,
$ \therefore x_1 = \sqrt{2}, x_2 = -\sqrt{2} $.
【例题3】用直接开方法解方程.
(1)$(x + 2)^{2}= 9$;
解:将方程两边开方,得
$ x + 2 = \pm 3 $,
$ \therefore x_1 = $
1
, $ x_2 = $
-5
;
(2)$2(x - 4)^{2}= 50$.
解:整理得 $ (x - 4)^2 = $
25
,
将方程两边开方,
得 $ x - 4 = \pm 5 $,
$ \therefore x_1 = $
9
, $ x_2 = $
-1
.
答案:
(1)解:将方程两边开方,得
$ x + 2 = \pm 3 $,
$ \therefore x_1 = 1, x_2 = -5 $;
(2)解:整理得 $ (x - 4)^2 = 25 $,
将方程两边开方,
得 $ x - 4 = \pm 5 $,
$ \therefore x_1 = 9, x_2 = -1 $.
【变式3】用直接开方法解方程.
(1)$100(1 + x)^{2}= 121$;
解:将方程变形为
$ (1 + x)^2 = \frac{121}{100} $,
两边开方,
得 $ 1 + x = \pm \frac{11}{10} $,
$ \therefore x_1 = $
$\frac{1}{10}$
, $ x_2 = $
$-\frac{21}{10}$

(2)$81(1 - x)^{2}= 64$.
解:将方程变形为 $ (1 - x)^2 = \frac{64}{81} $,
两边开方,
得 $ 1 - x = \pm \frac{8}{9} $,
$ \therefore x_1 = $
$\frac{1}{9}$
, $ x_2 = $
$\frac{17}{9}$
.
答案:
(1)解:将方程变形为
$ (1 + x)^2 = \frac{121}{100} $,
两边开方,
得 $ 1 + x = \pm \frac{11}{10} $,
$ \therefore x_1 = \frac{1}{10}, x_2 = -\frac{21}{10} $;
(2)解:将方程变形为 $ (1 - x)^2 = \frac{64}{81} $,
两边开方,
得 $ 1 - x = \pm \frac{8}{9} $,
$ \therefore x_1 = \frac{1}{9}, x_2 = \frac{17}{9} $.

查看更多完整答案,请扫码查看

关闭