2025年名师帮同步学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师帮同步学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师帮同步学案九年级数学全一册人教版》

第12页
【例题1】用十字相乘法解下列方程:
(1)$x^{2}+6x+8 = 0$;
解:
$(x + 2)(x + 4) = 0$

$\therefore x + 2 = 0$或$x + 4 = 0$,
$\therefore x_1 = $
$-2$
,$x_2 = $
$-4$

(2)$x^{2}-12x+35 = 0$;
解:
$(x - 5)(x - 7) = 0$

$\therefore x - 5 = 0$或$x - 7 = 0$,
$\therefore x_1 = $
$5$
,$x_2 = $
$7$
答案: 解:
(1)$(x + 2)(x + 4) = 0$,
$\therefore x + 2 = 0$或$x + 4 = 0$,
$\therefore x_1 = -2$,$x_2 = -4$;
(2)$(x - 5)(x - 7) = 0$,
$\therefore x - 5 = 0$或$x - 7 = 0$,
$\therefore x_1 = 5$,$x_2 = 7$。
【变式1】用十字相乘法解下列方程:
(1)$x^{2}-x-20 = 0$;
解: $(x - 5)(x + 4) = 0$,
$\therefore x - 5 = 0$或$x + 4 = 0$,
$\therefore x_1 = $
5
,$x_2 = $
-4

(2)$x^{2}+7x-8 = 0$。
解: $(x - 1)(x + 8) = 0$,
$\therefore x - 1 = 0$或$x + 8 = 0$,
$\therefore x_1 = $
1
,$x_2 = $
-8
答案: 解:
(1)$(x - 5)(x + 4) = 0$,
$\therefore x - 5 = 0$或$x + 4 = 0$,
$\therefore x_1 = 5$,$x_2 = -4$;
(2)$(x - 1)(x + 8) = 0$,
$\therefore x - 1 = 0$或$x + 8 = 0$,
$\therefore x_1 = 1$,$x_2 = -8$。
【例题2】用十字相乘法解下列方程:
(1)$12x^{2}+7x+1 = 0$;
解:
$(4x + 1)(3x + 1) = 0$

$\therefore 4x + 1 = 0$或$3x + 1 = 0$,
$\therefore x_1 = $
$-\frac{1}{4}$
,$x_2 = $
$-\frac{1}{3}$

(2)$3x^{2}-11x+6 = 0$。
解:
$(3x - 2)(x - 3) = 0$

$\therefore 3x - 2 = 0$或$x - 3 = 0$,
$\therefore x_1 = $
$\frac{2}{3}$
,$x_2 = $
$3$
答案: 解:
(1)$(4x + 1)(3x + 1) = 0$,
$\therefore 4x + 1 = 0$或$3x + 1 = 0$,
$\therefore x_1 = -\frac{1}{4}$,$x_2 = -\frac{1}{3}$;
(2)$(3x - 2)(x - 3) = 0$,
$\therefore 3x - 2 = 0$或$x - 3 = 0$,
$\therefore x_1 = \frac{2}{3}$,$x_2 = 3$。
【变式2】用十字相乘法解下列方程:
(1)$2x^{2}+3x+1 = 0$;
解:
$(x + 1)(2x + 1) = 0$

$\therefore x + 1 = 0$或$2x + 1 = 0$,
$\therefore x_1 = $
$-1$
,$x_2 = $
$-\frac{1}{2}$

(2)$2x^{2}-5x-3 = 0$;
解:
$(2x + 1)(x - 3) = 0$

$\therefore 2x + 1 = 0$或$x - 3 = 0$,
$\therefore x_1 = $
$-\frac{1}{2}$
,$x_2 = $
$3$
答案: 解:
(1)$(x + 1)(2x + 1) = 0$,
$\therefore x + 1 = 0$或$2x + 1 = 0$,
$\therefore x_1 = -1$,$x_2 = -\frac{1}{2}$;
(2)$(2x + 1)(x - 3) = 0$,
$\therefore 2x + 1 = 0$或$x - 3 = 0$,
$\therefore x_1 = -\frac{1}{2}$,$x_2 = 3$。
【例题3】解方程:$(40 - x)(20 + 2x) = 1200$。
答案: 解: 整理,得$x^2 - 30x + 200 = 0$,
$(x - 10)(x - 20) = 0$,
$\therefore x - 10 = 0$或$x - 20 = 0$,
$\therefore x_1 = 10$,$x_2 = 20$。
【变式3】解方程:$\frac{1}{2}x(x - 1) = 55$。
答案: 解: 整理,得$x^2 - x - 110 = 0$,
$(x - 11)(x + 10) = 0$,
$\therefore x - 11 = 0$或$x + 10 = 0$,
解得$x_1 = 11$,$x_2 = -10$。

查看更多完整答案,请扫码查看

关闭