2025年零障碍导教导学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年零障碍导教导学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年零障碍导教导学案九年级数学全一册人教版》

第140页
17. (2024·新会区校级期中)如图,有一圆弧形拱桥,它的跨度(所对弦长)为60 m,拱高18 m,当水面涨至其跨度只有30 m时,就要采取紧急措施. 某次洪水来到时,拱顶离水面只有4 m,问是否需要采取紧急措施?
解:设圆的半径为
34
m.
∵ AB = 60 m,MP = 18 m,
OP ⊥ AB,
∴ AM = $\frac{1}{2}$AB = 30(m),
OM = OP - MP = (x - 18)(m).
在Rt△OAM中,
OA² = AM² + OM²,
∴ x² = 30² + (x - 18)²,
解得x = 34.
∴ OA' = OP = 34 m.
当PN = 4 m时,
ON = 34 - 4 = 30(m),
设A'N = y m.
在Rt△OA'N中,
OA'² = A'N² + ON²,
∴ 34² = y² + 30²,
解得y = 16或y = -16(舍去).
∴ A'N = 16 m.
∴ A'B' = 2A'N = 2 × 16 = 32(m).
∵ 32 > 30,
不需要
采取紧急措施.
答案: 解:设圆的半径为$x$m.
$\because AB = 60$m,$MP = 18$m,
$OP \perp AB$,
$\therefore AM = \frac{1}{2}AB = 30(m)$,
$OM = OP - MP = (x - 18)(m)$.
在$Rt\triangle OAM$中,
$OA^{2} = AM^{2} + OM^{2}$,
$\therefore x^{2} = 30^{2} + (x - 18)^{2}$,
解得$x = 34$.
$\therefore OA' = OP = 34$m.
当$PN = 4$m时,
$ON = 34 - 4 = 30(m)$,
设$A'N = y$m.
在$Rt\triangle OA'N$中,
$OA'^{2} = A'N^{2} + ON^{2}$,
$\therefore 34^{2} = y^{2} + 30^{2}$,
解得$y = 16$或$y = -16$(舍去).
$\therefore A'N = 16$m.
$\therefore A'B' = 2A'N = 2 \times 16 = 32(m)$.
$\because 32 > 30$,
$\therefore$不需要采取紧急措施.
18. 如图,在四边形ABCD中,AB//CD,点O在BD上,以点O为圆心的圆恰好经过A,B,C三点,⊙O交BD于点E,交AD于点F,且$\overset{\frown}{AE}= \overset{\frown}{CE}$,连接OA,OF.
(1)求证:四边形ABCD是菱形;
(2)若$\angle AOF = 3\angle FOE$,求$\angle ABC$的度数.

(1)证明:$\because \overset{\frown}{AE} = \overset{\frown}{CE}$,

$\therefore \angle CBD = \angle ABD$.
$\because CD // AB$,
$\therefore \angle ABD = \angle CDB$.
$\therefore \angle CBD = \angle CDB$.
$\therefore CB = CD$.
$\because BE$是$\odot O$的直径,
$\therefore \overset{\frown}{BAE} - \overset{\frown}{AE} = \overset{\frown}{BCE} - \overset{\frown}{CE}$,
$\therefore \overset{\frown}{AB} = \overset{\frown}{BC}$.
$\therefore AB = BC = CD$.
$\because CD // AB$,
$\therefore$四边形ABCD是菱形.
(2)解:$\because \angle AOF = 3\angle FOE$,
设$\angle FOE = x$,
则$\angle AOF = 3x$.
$\therefore \angle AOD = \angle FOE + \angle AOF = 4x$.
$\because OA = OF$,
$\therefore \angle OAF = \angle OFA = \frac{1}{2}(180^{\circ} - 3x)$.
$\because OA = OB$,
$\therefore \angle OAB = \angle OBA$.
$\because \angle AOD = \angle OAB + \angle OBA = 2\angle OAB = 2\angle OBA = 4x$,
$\therefore \angle OAB = \angle OBA = 2x$.
$\because$四边形ABCD是菱形,
$\therefore \angle ABC = 2\angle ABO = 4x$,
$BC // AD$.
$\therefore \angle ABC + \angle BAD = 180^{\circ}$.
$\therefore 4x + 2x + \frac{1}{2}(180^{\circ} - 3x) = 180^{\circ}$.
解得$x = 20^{\circ}$.
$\therefore \angle ABC = 4x =$
$80^{\circ}$
.
答案:
(1)证明:$\because \overset{\frown}{AE} = \overset{\frown}{CE}$,
$\therefore \angle CBD = \angle ABD$.
$\because CD // AB$,
$\therefore \angle ABD = \angle CDB$.
$\therefore \angle CBD = \angle CDB$.
$\therefore CB = CD$.
$\because BE$是$\odot O$的直径,
$\therefore \overset{\frown}{BAE} - \overset{\frown}{AE} = \overset{\frown}{BCE} - \overset{\frown}{CE}$,
$\therefore \overset{\frown}{AB} = \overset{\frown}{BC}$.
$\therefore AB = BC = CD$.
$\because CD // AB$,
$\therefore$四边形ABCD是菱形.
(2)解:$\because \angle AOF = 3\angle FOE$,
设$\angle FOE = x$,
则$\angle AOF = 3x$.
$\therefore \angle AOD = \angle FOE + \angle AOF = 4x$.
$\because OA = OF$,
$\therefore \angle OAF = \angle OFA = \frac{1}{2}(180^{\circ} - 3x)$.
$\because OA = OB$,
$\therefore \angle OAB = \angle OBA$.
$\because \angle AOD = \angle OAB + \angle OBA = 2\angle OAB = 2\angle OBA = 4x$,
$\therefore \angle OAB = \angle OBA = 2x$.
$\because$四边形ABCD是菱形,
$\therefore \angle ABC = 2\angle ABO = 4x$,
$BC // AD$.
$\therefore \angle ABC + \angle BAD = 180^{\circ}$.
$\therefore 4x + 2x + \frac{1}{2}(180^{\circ} - 3x) = 180^{\circ}$.
解得$x = 20^{\circ}$.
$\therefore \angle ABC = 4x = 80^{\circ}$.

查看更多完整答案,请扫码查看

关闭