第34页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克.根据销售情况,发现该水果一天的销售量$y$(单位:千克)与该天的售价$x$(单位:元/千克)满足如下表所示的一次函数关系.

(1) 某天这种水果的售价为23.5元/千克,求当天该水果的销售量;
(2) 如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
(1) 某天这种水果的售价为23.5元/千克,求当天该水果的销售量;
(2) 如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
答案:
(1)33千克;
(2)25元.
(1)33千克;
(2)25元.
1. 关于 $ x $ 的方程 $ ax^{2}-3x+2 = 0 $ 是一元二次方程,则(
A.$ a>0 $
B.$ a\neq0 $
C.$ a = 1 $
D.$ a\geq0 $
B
)A.$ a>0 $
B.$ a\neq0 $
C.$ a = 1 $
D.$ a\geq0 $
答案:
B
2. 用配方法解方程 $ x^{2}+10x+9 = 0 $,配方后可得(
A.$ (x+5)^{2}= 16 $
B.$ (x+5)^{2}= 1 $
C.$ (x+10)^{2}= 91 $
D.$ (x+10)^{2}= 109 $
A
)A.$ (x+5)^{2}= 16 $
B.$ (x+5)^{2}= 1 $
C.$ (x+10)^{2}= 91 $
D.$ (x+10)^{2}= 109 $
答案:
A
3. 方程 $ x(x-1)= x $ 的根是(
A.$ x = 2 $
B.$ x = -2 $
C.$ x_{1}= -2,x_{2}= 0 $
D.$ x_{1}= 2,x_{2}= 0 $
D
)A.$ x = 2 $
B.$ x = -2 $
C.$ x_{1}= -2,x_{2}= 0 $
D.$ x_{1}= 2,x_{2}= 0 $
答案:
D
4. 俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘. 假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,设每天“遗忘”的百分比为 $ x $,则 $ x $ 满足方程(
A.$ (1+0.5x)^{2}= 0.5 $
B.$ (1-0.5x)^{2}= 0.5 $
C.$ (1+x)^{2}= 0.5 $
D.$ (1-x)^{2}= 0.5 $
D
)A.$ (1+0.5x)^{2}= 0.5 $
B.$ (1-0.5x)^{2}= 0.5 $
C.$ (1+x)^{2}= 0.5 $
D.$ (1-x)^{2}= 0.5 $
答案:
D
5. 一个多边形有 9 条对角线,则该多边形的边数是(
A.6
B.7
C.8
D.9
A
)A.6
B.7
C.8
D.9
答案:
A
6. 若 0 是关于 $ x $ 的一元二次方程 $ (k-2)x^{2}+3x+k^{2}-4 = 0 $ 的一个根,则 $ k = $
-2
.
答案:
-2
7. 若方程 $ (n-3)x^{\vert n\vert -1}+3x+3n = 0 $ 是关于 $ x $ 的一元二次方程,则 $ n = $
-3
.
答案:
-3
8. 若方程 $ x^{2}-3x-1 = 0 $ 的两根为 $ x_{1},x_{2} $,则 $ \frac{1}{x_{1}}+\frac{1}{x_{2}} $ 的值为
-3
.
答案:
-3
9. 某校九年级学生毕业时,每个学生都将自己的相片向全班其他同学各送 1 张留作纪念,全班共送了 1640 张相片. 如果全班有 $ x $ 名学生,根据题意列出的方程为
x(x-1)=1640
.
答案:
x(x-1)=1640
10. 若一个三角形的三边长均满足方程 $ x^{2}-6x+8 = 0 $,则此三角形的周长为
6或10或12
.
答案:
6或10或12
11. (每小题 4 分,共 8 分)解下列方程:
(1) $ x^{2}-2x-15 = 0 $;
(2) $ (3x-1)(x-1)= (4x+1)(x-1) $.
(1) $ x^{2}-2x-15 = 0 $;
(2) $ (3x-1)(x-1)= (4x+1)(x-1) $.
答案:
(1)x₁=5,x₂=-3;
(2)x₁=1,x₂=-2.
(1)x₁=5,x₂=-3;
(2)x₁=1,x₂=-2.
查看更多完整答案,请扫码查看