2025年智慧学习明天出版社九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年智慧学习明天出版社九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年智慧学习明天出版社九年级数学全一册人教版》

第194页
1. 如图, 身高为 $1.6m$ 的小丽在阳光下的影长为 $2m$, 在同一时刻, 一棵大树的影长为 $8m$, 则这棵树的高度为
6.4
$m$.
答案: 6.4
2. 《周髀算经》中记载了“偃矩以望高”的方法. “矩”在古代指两条边呈直角的曲尺 (即图中的 $ABC$). “偃矩以望高”的意思是把“矩”仰立放, 可测量物体的高度. 如图, 点 $A, B, Q$ 在同一水平线上, $\angle ABC$ 和 $\angle AQP$ 均为直角, $AP$ 与 $BC$ 相交于点 $D$. 测得 $AB = 40cm$, $BD = 20cm$, $AQ = 12m$, 则树高 $PQ = $
6m
.
答案: 6m
1. 某天某个数学兴趣小组的同学们去测量一棵树的高度 (这棵树底部可以到达, 顶部不易到达). 如图, 他们带了以下测量工具: 皮尺、标杆、一副三角尺、小平面镜. 请你在他们提供的测量工具中选出所需工具, 设计一种测量方案.
(1) 所需的测量工具是____;
(2) 请在下图中画出测量示意图;
(3) 设树高 $AB$ 为 $x$, 请用所测数据 (用小写字母表示) 求出 $x$.
答案: 答案略
2. 如图, 身高为 $1.7m$ 的小明 $AB$ 站在河边的一岸, 利用树的倒影去测量河对岸一棵树 $CD$ 的高度, $CD$ 的倒影为 $C'D$, 点 $A, E, C'$ 在一条视线上. 已知河 $BD$ 的宽度为 $12m$, $BE = 3m$, 求 $CD$ 的长度.
答案:
∵AB⊥BD,C'D⊥BD,
∴∠ABE=∠C'DE=90°。
∵∠AEB=∠C'ED,
∴△ABE∽△C'DE。
∴$\frac{AB}{C'D}=\frac{BE}{DE}$。
∵CD=C'D,BD=12m,BE=3m,
∴DE=BD-BE=12-3=9m。
∵AB=1.7m,
∴$\frac{1.7}{CD}=\frac{3}{9}$,
解得CD=5.1m。
答:CD的长度为5.1m。

查看更多完整答案,请扫码查看

关闭