2025年一本知识大盘点高中数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一本知识大盘点高中数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一本知识大盘点高中数学全一册人教版》

第264页
例 4 (1) 如图,已知四棱锥 $ P - ABCD $ 的各棱长均为 2,则 $ \overrightarrow{AP} · \overrightarrow{BC} = $(
2
)
A.$ 2\sqrt{3} $
B.$ \sqrt{3} $
C.1
D.2
答案:
(1)
$ \because $四棱锥 $ P - ABCD $ 的各棱长均为 $ 2 $,
$ \therefore \triangle ADP $ 为等边三角形,四边形 $ ABCD $ 为菱形,
$ \therefore AP = AD $,$ \angle PAD = 60^{\circ} $,$ AD // BC $,$ AD = BC $,
$ \therefore \overrightarrow{AD} = \overrightarrow{BC} $,
$ \therefore \overrightarrow{AP} · \overrightarrow{BC} $
$ = \overrightarrow{AP} · \overrightarrow{AD} $
$ = |\overrightarrow{AP}| |\overrightarrow{AD}| \cos \angle PAD $
$ = 2 × 2 × \cos 60^{\circ} $
$ = 2 $
答案:D
(2) 如图,在各棱长都为 2 的四面体 $ ABCD $ 中,$ \overrightarrow{CE} = \overrightarrow{ED} $,$ \overrightarrow{AF} = 2\overrightarrow{FD} $,则 $ \overrightarrow{BE} · \overrightarrow{CF} = $(
A
)


A.$ -\frac{1}{3} $
B.$ \frac{1}{3} $
C.$ -\frac{1}{2} $
D.$ \frac{1}{2} $
答案:
(2)
$ \because $各棱长都为 $ 2 $,
$ \therefore \overrightarrow{BA} $,$ \overrightarrow{BC} $ 的夹角,$ \overrightarrow{BD} $,$ \overrightarrow{BC} $ 的夹角,$ \overrightarrow{BD} $,$ \overrightarrow{BA} $ 的夹角均为 $ \frac{\pi}{3} $,
$ \because \overrightarrow{CE} = \overrightarrow{ED} $,$ \overrightarrow{AF} = 2\overrightarrow{FD} $,
$ \therefore \overrightarrow{BE} = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{BD}) $,$ \overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD} $,
$ \therefore \overrightarrow{CF} $
$ = \overrightarrow{BF} - \overrightarrow{BC} $
$ = \overrightarrow{BA} + \overrightarrow{AF} - \overrightarrow{BC} $
$ = \overrightarrow{BA} + \frac{2}{3}\overrightarrow{AD} - \overrightarrow{BC} $
$ = \overrightarrow{BA} + \frac{2}{3}(\overrightarrow{BD} - \overrightarrow{BA}) - \overrightarrow{BC} $
$ = \frac{1}{3}\overrightarrow{BA} - \overrightarrow{BC} + \frac{2}{3}\overrightarrow{BD} $
$ \therefore \overrightarrow{BE} · \overrightarrow{CF} $
$ = \frac{1}{2}(\overrightarrow{BC} + \overrightarrow{BD}) · (\frac{1}{3}\overrightarrow{BA} - \overrightarrow{BC} + \frac{2}{3}\overrightarrow{BD}) $
$ = \frac{1}{6}\overrightarrow{BA} · \overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC}^2 - \frac{1}{6}\overrightarrow{BC} · \overrightarrow{BD} + \frac{1}{6}\overrightarrow{BA} · \overrightarrow{BD} + \frac{1}{3}\overrightarrow{BD}^2 $
$ = \frac{1}{6}|\overrightarrow{BA}| |\overrightarrow{BC}| \cos \frac{\pi}{3} - \frac{1}{2}|\overrightarrow{BC}|^2 - \frac{1}{6}|\overrightarrow{BC}| |\overrightarrow{BD}| \cos \frac{\pi}{3} + \frac{1}{6}|\overrightarrow{BA}| |\overrightarrow{BD}| \cos \frac{\pi}{3} + \frac{1}{3}|\overrightarrow{BD}|^2 $
$ = \frac{1}{6} × 2 × 2 × \frac{1}{2} - \frac{1}{2} × 2^2 - \frac{1}{6} × 2 × 2 × \frac{1}{2} + \frac{1}{6} × 2 × 2 × \frac{1}{2} + \frac{1}{3} × 2^2 $
$ = -\frac{1}{3} $
答案:A

查看更多完整答案,请扫码查看

关闭