2025年一本知识大盘点高中数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年一本知识大盘点高中数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年一本知识大盘点高中数学全一册人教版》

第129页
母题3 利用三角恒等变换证明
例5 (1)求证:$\frac{sinα+sin3α+sin5α}{cosα+cos3α+cos5α}=tan3α$;
(2)已知$tan(α+β)=2tanα$,求证:$3sinβ=sin(2α+β)$。
(1)
证明:
方法1:
$\begin{aligned}\frac{\sin\alpha + \sin3\alpha + \sin5\alpha}{\cos\alpha + \cos3\alpha + \cos5\alpha} &= \frac{\sin(3\alpha - 2\alpha) + \sin3\alpha + \sin(3\alpha + 2\alpha)}{\cos(3\alpha - 2\alpha) + \cos3\alpha + \cos(3\alpha + 2\alpha)} \\&= \frac{\sin3\alpha\cos2\alpha - \cos3\alpha\sin2\alpha + \sin3\alpha + \sin3\alpha\cos2\alpha + \cos3\alpha\sin2\alpha}{\cos3\alpha\cos2\alpha + \sin3\alpha\sin2\alpha + \cos3\alpha + \cos3\alpha\cos2\alpha - \sin3\alpha\sin2\alpha} \\&= \frac{2\sin3\alpha\cos2\alpha + \sin3\alpha}{2\cos3\alpha\cos2\alpha + \cos3\alpha} \\&= \frac{\sin3\alpha(2\cos2\alpha + 1)}{\cos3\alpha(2\cos2\alpha + 1)} \\&= \tan3\alpha\end{aligned}$
方法2:
$\begin{aligned}\frac{\sin\alpha + \sin3\alpha + \sin5\alpha}{\cos\alpha + \cos3\alpha + \cos5\alpha} &= \frac{\sin\alpha + \sin5\alpha + \sin3\alpha}{\cos\alpha + \cos5\alpha + \cos3\alpha} \\&= \frac{2\sin\frac{\alpha + 5\alpha}{2}\cos\frac{\alpha - 5\alpha}{2} + \sin3\alpha}{2\cos\frac{\alpha + 5\alpha}{2}\cos\frac{\alpha - 5\alpha}{2} + \cos3\alpha} \\&= \frac{2\sin3\alpha\cos2\alpha + \sin3\alpha}{2\cos3\alpha\cos2\alpha + \cos3\alpha} \\&= \frac{\sin3\alpha(2\cos2\alpha + 1)}{\cos3\alpha(2\cos2\alpha + 1)} \\&= \tan3\alpha\end{aligned}$
(2)
证明:
方法1:
由 $\tan(\alpha + \beta) = 2\tan\alpha$,得 $\frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{2\sin\alpha}{\cos\alpha}$,
即 $\sin(\alpha + \beta)\cos\alpha = 2\cos(\alpha + \beta)\sin\alpha$,
$\begin{aligned}\sin(2\alpha + \beta) &= \sin[(\alpha + \beta) + \alpha] \\&= \sin(\alpha + \beta)\cos\alpha + \cos(\alpha + \beta)\sin\alpha \\&= 3\cos(\alpha + \beta)\sin\alpha\end{aligned}$
$\begin{aligned}3\sin\beta &= 3\sin[(\alpha + \beta) - \alpha] \\&= 3[\sin(\alpha + \beta)\cos\alpha - \cos(\alpha + \beta)\sin\alpha] \\&= 3\cos(\alpha + \beta)\sin\alpha\end{aligned}$
所以 $3\sin\beta = \sin(2\alpha + \beta)$。
方法2:
由 $\sin(\alpha + \beta)\cos\alpha = 2\cos(\alpha + \beta)\sin\alpha$,
得 $\frac{1}{2}[\sin(\alpha + \beta + \alpha) + \sin(\alpha + \beta - \alpha)] = \sin(\alpha + \beta + \alpha) - \sin(\alpha + \beta - \alpha)$,
化简得 $\sin(2\alpha + \beta) = 3\sin\beta$。
答案:
(1)
证明:
方法1:
$\begin{aligned}\frac{\sin\alpha + \sin3\alpha + \sin5\alpha}{\cos\alpha + \cos3\alpha + \cos5\alpha} &= \frac{\sin(3\alpha - 2\alpha) + \sin3\alpha + \sin(3\alpha + 2\alpha)}{\cos(3\alpha - 2\alpha) + \cos3\alpha + \cos(3\alpha + 2\alpha)} \\&= \frac{\sin3\alpha\cos2\alpha - \cos3\alpha\sin2\alpha + \sin3\alpha + \sin3\alpha\cos2\alpha + \cos3\alpha\sin2\alpha}{\cos3\alpha\cos2\alpha + \sin3\alpha\sin2\alpha + \cos3\alpha + \cos3\alpha\cos2\alpha - \sin3\alpha\sin2\alpha} \\&= \frac{2\sin3\alpha\cos2\alpha + \sin3\alpha}{2\cos3\alpha\cos2\alpha + \cos3\alpha} \\&= \frac{\sin3\alpha(2\cos2\alpha + 1)}{\cos3\alpha(2\cos2\alpha + 1)} \\&= \tan3\alpha\end{aligned}$
方法2:
$\begin{aligned}\frac{\sin\alpha + \sin3\alpha + \sin5\alpha}{\cos\alpha + \cos3\alpha + \cos5\alpha} &= \frac{\sin\alpha + \sin5\alpha + \sin3\alpha}{\cos\alpha + \cos5\alpha + \cos3\alpha} \\&= \frac{2\sin\frac{\alpha + 5\alpha}{2}\cos\frac{\alpha - 5\alpha}{2} + \sin3\alpha}{2\cos\frac{\alpha + 5\alpha}{2}\cos\frac{\alpha - 5\alpha}{2} + \cos3\alpha} \\&= \frac{2\sin3\alpha\cos2\alpha + \sin3\alpha}{2\cos3\alpha\cos2\alpha + \cos3\alpha} \\&= \frac{\sin3\alpha(2\cos2\alpha + 1)}{\cos3\alpha(2\cos2\alpha + 1)} \\&= \tan3\alpha\end{aligned}$
(2)
证明:
方法1:
由 $\tan(\alpha + \beta) = 2\tan\alpha$,得 $\frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{2\sin\alpha}{\cos\alpha}$,
即 $\sin(\alpha + \beta)\cos\alpha = 2\cos(\alpha + \beta)\sin\alpha$,
$\begin{aligned}\sin(2\alpha + \beta) &= \sin[(\alpha + \beta) + \alpha] \\&= \sin(\alpha + \beta)\cos\alpha + \cos(\alpha + \beta)\sin\alpha \\&= 3\cos(\alpha + \beta)\sin\alpha\end{aligned}$
$\begin{aligned}3\sin\beta &= 3\sin[(\alpha + \beta) - \alpha] \\&= 3[\sin(\alpha + \beta)\cos\alpha - \cos(\alpha + \beta)\sin\alpha] \\&= 3\cos(\alpha + \beta)\sin\alpha\end{aligned}$
所以 $3\sin\beta = \sin(2\alpha + \beta)$。
方法2:
由 $\sin(\alpha + \beta)\cos\alpha = 2\cos(\alpha + \beta)\sin\alpha$,
得 $\frac{1}{2}[\sin(\alpha + \beta + \alpha) + \sin(\alpha + \beta - \alpha)] = \sin(\alpha + \beta + \alpha) - \sin(\alpha + \beta - \alpha)$,
化简得 $\sin(2\alpha + \beta) = 3\sin\beta$。
例6 已知函数$f(x)=\sinxcosx-\sqrt{3}cos^{2}x+\frac{\sqrt{3}}{2}$。
(1)求函数$f(x)$的最小正周期和单调递减区间;
(2)求函数$f(x)$在区间$[-\frac{π}{6},\frac{π}{4}]$上的值域。
(1)首先,$f(x)=\sin x\cos x - \sqrt{3}\cos^{2}x+\frac{\sqrt{3}}{2}$
$=\frac{1}{2}\sin2x-\frac{\sqrt{3}(1 + \cos2x)}{2}+\frac{\sqrt{3}}{2}$
$=\frac{1}{2}\sin2x-\frac{\sqrt{3}}{2}\cos2x$
$=\sin(2x - \frac{\pi}{3})$
函数$f(x)$的最小正周期$T=\frac{2\pi}{2}=\pi$
由$2k\pi+\frac{\pi}{2}\leq2x-\frac{\pi}{3}\leq2k\pi+\frac{3\pi}{2}(k\in Z)$
得$k\pi+\frac{5\pi}{12}\leq x\leq k\pi+\frac{11\pi}{12}(k\in Z)$
函数$f(x)$的单调递减区间为$[k\pi+\frac{5\pi}{12},k\pi+\frac{11\pi}{12}](k\in Z)$
(2)当$-\frac{\pi}{6}\leq x\leq\frac{\pi}{4}$时,$-\frac{2\pi}{3}\leq2x-\frac{\pi}{3}\leq\frac{\pi}{6}$
$\sin(-\frac{2\pi}{3})\leq\sin(2x - \frac{\pi}{3})\leq\sin\frac{\pi}{6}$
即$-1\leq\sin(2x - \frac{\pi}{3})\leq\frac{1}{2}$
函数$f(x)$在区间$[-\frac{\pi}{6},\frac{\pi}{4}]$上的值域为$[-1,\frac{1}{2}]$
答案:
(1)
首先,$f(x)=\sin x\cos x - \sqrt{3}\cos^{2}x+\frac{\sqrt{3}}{2}$
$=\frac{1}{2}\sin2x-\frac{\sqrt{3}(1 + \cos2x)}{2}+\frac{\sqrt{3}}{2}$
$=\frac{1}{2}\sin2x-\frac{\sqrt{3}}{2}\cos2x$
$=\sin(2x - \frac{\pi}{3})$
函数$f(x)$的最小正周期$T=\frac{2\pi}{2}=\pi$
由$2k\pi+\frac{\pi}{2}\leq2x-\frac{\pi}{3}\leq2k\pi+\frac{3\pi}{2}(k\in Z)$
得$k\pi+\frac{5\pi}{12}\leq x\leq k\pi+\frac{11\pi}{12}(k\in Z)$
函数$f(x)$的单调递减区间为$[k\pi+\frac{5\pi}{12},k\pi+\frac{11\pi}{12}](k\in Z)$
(2)
当$-\frac{\pi}{6}\leq x\leq\frac{\pi}{4}$时,$-\frac{2\pi}{3}\leq2x-\frac{\pi}{3}\leq\frac{\pi}{6}$
$\sin(-\frac{2\pi}{3})\leq\sin(2x - \frac{\pi}{3})\leq\sin\frac{\pi}{6}$
即$-1\leq\sin(2x - \frac{\pi}{3})\leq\frac{1}{2}$
函数$f(x)$在区间$[-\frac{\pi}{6},\frac{\pi}{4}]$上的值域为$[-1,\frac{1}{2}]$

查看更多完整答案,请扫码查看

关闭