2025年零障碍导教导学案九年级数学全一册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年零障碍导教导学案九年级数学全一册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年零障碍导教导学案九年级数学全一册北师大版》

第97页
5. (2024·龙岗区期中) 如图,已知 $\angle 1 = \angle 2$,那么添加下列的一个条件后,仍无法判定 $\triangle ABC \backsim \triangle ADE$ 的是 (
C
)


A. $\frac{AB}{AD} = \frac{AC}{AE}$
B. $\angle B = \angle D$
C. $\frac{AB}{AD} = \frac{BC}{DE}$
D. $\angle C = \angle AED$
答案: C
6. 如图,$AD$,$BC$ 相交于点 $O$,$P$ 为 $AB$,$CD$ 延长线的交点,且 $PA \cdot PB = PC \cdot PD$.
求证:$\triangle PAD \backsim \triangle PCB$.
答案: 证明:$\because PA \cdot PB = PC \cdot PD$,
$\therefore \frac{PA}{PC} = \frac{PD}{PB}$.
又$\because \angle P = \angle P$,
$\therefore \triangle PAD \backsim \triangle PCB$.
7. 【原创题】如图,$\angle A = \angle D = \angle CBE = \alpha$,点 $A$,$B$,$D$ 在同一直线上.
(1) 若 $\alpha = 60^{\circ}$,求证:图中两个三角形相似;
(2) 若 $AC = DE = 2$,$AD = 5$,求 $AB$ 的长.
(1) 证明:$\because \angle ABC + \angle C = 180^{\circ} -$$\angle A = 120^{\circ}$,$\angle ABC + \angle DBE = 180^{\circ} - \angle CBE$$= 120^{\circ}$,$\therefore \angle C = \angle DBE$.又$\because \angle A = \angle D$,$\therefore \triangle ABC \backsim \triangle DEB$.
(2)解:在$\triangle ABC$中.$\because \angle A = \alpha$,$\therefore \angle C + \angle ABC = 180^{\circ} - \alpha$.$\because \angle CBE = \alpha$,$\therefore \angle EBD + \angle ABC = 180^{\circ} - \alpha$.$\therefore \angle C = \angle EBD$.又$\because \angle A = \angle D = \alpha$,$\therefore \triangle ABC \backsim \triangle DEB$.$\therefore \frac{AC}{DB} = \frac{AB}{DE}$.设$AB = x$,则$BD = 5 - x$.$\therefore \frac{2}{5 - x} = \frac{x}{2}$.$\therefore 5x - x^{2} = 4$.$\therefore x^{2} - 5x + 4 = 0$,解得$x_{1} = 1$,$x_{2} = 4$.$\therefore AB = $
1或4
.
答案:
(1) 证明:$\because \angle ABC + \angle C = 180^{\circ} -$
$\angle A = 120^{\circ}$,
$\angle ABC + \angle DBE = 180^{\circ} - \angle CBE$
$= 120^{\circ}$,
$\therefore \angle C = \angle DBE$.
又$\because \angle A = \angle D$,
$\therefore \triangle ABC \backsim \triangle DEB$.
(2)解:在$\triangle ABC$中.
$\because \angle A = \alpha$,
$\therefore \angle C + \angle ABC = 180^{\circ} - \alpha$.
$\because \angle CBE = \alpha$,
$\therefore \angle EBD + \angle ABC = 180^{\circ} - \alpha$.
$\therefore \angle C = \angle EBD$.
又$\because \angle A = \angle D = \alpha$,
$\therefore \triangle ABC \backsim \triangle DEB$.
$\therefore \frac{AC}{DB} = \frac{AB}{DE}$.
设$AB = x$,则$BD = 5 - x$.
$\therefore \frac{2}{5 - x} = \frac{x}{2}$.
$\therefore 5x - x^{2} = 4$.
$\therefore x^{2} - 5x + 4 = 0$,
解得$x_{1} = 1$,$x_{2} = 4$.
$\therefore AB = 1$或$AB = 4$.
8. 如图,在 $\triangle ABC$ 中,$\angle ACB = 90^{\circ}$,$CA = CB = 2\sqrt{2}$. $D$,$E$ 为 $AB$ 上两点,且 $\angle DCE = 45^{\circ}$.
(1) 求证:$\triangle ACE \backsim \triangle BDC$;
(2) 若 $AD = 1$,求 $DE$ 的长.


(1)证明:$\because \angle ACB = 90^{\circ}$,
$CA = CB$,
$\therefore \angle A = \angle B$
$= \frac{1}{2}(180^{\circ} - 90^{\circ})$
$= 45^{\circ}$.
又$\because \angle CDB = \angle A + \angle ACD$
$= 45^{\circ} + \angle ACD$
$= \angle ACE$,
$\therefore \triangle ACE \backsim \triangle BDC$.
(2)解:由勾股定理,得
$AB = \sqrt{(2\sqrt{2})^{2} + (2\sqrt{2})^{2}} = 4$.
设$DE$的长为$x$.
$\because AD = 1$,
$\therefore BD = 3$,$AE = 1 + x$.
$\because \triangle ACE \backsim \triangle BDC$,
$\therefore \frac{AC}{BD} = \frac{AE}{BC}$,即$\frac{2\sqrt{2}}{3} = \frac{1 + x}{2\sqrt{2}}$,
解得$x = $
$\frac{5}{3}$
,即$DE = $
$\frac{5}{3}$
.
答案:
(1)证明:$\because \angle ACB = 90^{\circ}$,
$CA = CB$,
$\therefore \angle A = \angle B$
$= \frac{1}{2}(180^{\circ} - 90^{\circ})$
$= 45^{\circ}$.
又$\because \angle CDB = \angle A + \angle ACD$
$= 45^{\circ} + \angle ACD$
$= \angle ACE$,
$\therefore \triangle ACE \backsim \triangle BDC$.
(2)解:由勾股定理,得
$AB = \sqrt{(2\sqrt{2})^{2} + (2\sqrt{2})^{2}} = 4$.
设$DE$的长为$x$.
$\because AD = 1$,
$\therefore BD = 3$,$AE = 1 + x$.
$\because \triangle ACE \backsim \triangle BDC$,
$\therefore \frac{AC}{BD} = \frac{AE}{BC}$,即$\frac{2\sqrt{2}}{3} = \frac{1 + x}{2\sqrt{2}}$,
解得$x = \frac{5}{3}$,即$DE = \frac{5}{3}$.

查看更多完整答案,请扫码查看

关闭