2025年广东名师讲练通九年级数学全一册北师大版深圳专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年广东名师讲练通九年级数学全一册北师大版深圳专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年广东名师讲练通九年级数学全一册北师大版深圳专版》

第82页
1. 如图,$AB$与$CD$相交于点$E$,$AD// BC,\frac {BE}{AE}=\frac {3}{5},CD=16$,则$DE$的长为
10
.
答案: $10$
2. 如图,$AC$是矩形$ABCD$的对角线,$E$是边$BC$延长线上一点,$AE$与$CD$相交于点$F$,则图中的相似三角形共有
4
对.
答案: $4$
3. (2024秋·宝安区校级月考)如图,下列条件不能判定$\triangle ADB\backsim \triangle ABC$的是(
D
).

A. $\angle ABD=\angle ACB$
B. $\angle ADB=\angle ABC$
C. $AB^{2}=AD\cdot AC$
D. $\frac {AD}{AB}=\frac {AB}{BC}$
答案: $D$
4. 如图,在$\triangle ABC$中,点$D$,$E$分别在$AB$,$AC$边上,$DE// BC$,且$\angle DCE=\angle B$,那么下列判断中,错误的是(
D
).

A. $\triangle ADE\backsim \triangle ABC$
B. $\triangle ADE\backsim \triangle ACD$
C. $\triangle DEC\backsim \triangle CDB$
D. $\triangle ADE\backsim \triangle DCB$
答案: $D$
5. 如图,在$\triangle ABC$中,点$D$在边$AB$上,满足$\angle ACD=\angle ABC$,若$AC=\sqrt {3},AD=1$,求$DB$的长.

解:$\because \angle A C D = \angle A B C$,$\angle A = \angle A$,
$\therefore \triangle A B C \backsim \triangle A C D$,$\therefore \frac { A D } { A C } = \frac { A C } { A B }$。
$\because A C = \sqrt { 3 }$,$A D = 1$,$\therefore \frac { 1 } { \sqrt { 3 } } = \frac { \sqrt { 3 } } { A B }$,
$\therefore A B = 3$,$\therefore B D = A B - A D = 3 - 1 =$
2
答案: 解:$\because \angle A C D = \angle A B C$,$\angle A = \angle A$,
$\therefore \triangle A B C \backsim \triangle A C D$,$\therefore \frac { A D } { A C } = \frac { A C } { A B }$。
$\because A C = \sqrt { 3 }$,$A D = 1$,$\therefore \frac { 1 } { \sqrt { 3 } } = \frac { \sqrt { 3 } } { A B }$,
$\therefore A B = 3$,$\therefore B D = A B - A D = 3 - 1 = 2$。
6. 如图,在$\triangle ABC$和$\triangle ADE$中,$\frac {AB}{AD}=\frac {BC}{DE}=\frac {AC}{AE}$,点$B$,$D$,$E$在一条直线上,求证:$\triangle ABD\backsim \triangle ACE$.
证明:
$\because$在$\triangle A B C$和$\triangle A D E$中,$\frac { A B } { A D } = \frac { B C } { D E } = \frac { A C } { A E }$,$\therefore \triangle A B C \backsim \triangle A D E$,$\therefore \angle B A C = \angle D A E$,$\therefore \angle B A D = \angle C A E$。$\because \frac { A B } { A D } = \frac { A C } { A E }$,$\therefore \frac { A B } { A C } = \frac { A D } { A E }$,$\therefore \triangle A B D \backsim \triangle A C E$。
答案: 证明:$\because$在$\triangle A B C$和$\triangle A D E$中,$\frac { A B } { A D } = \frac { B C } { D E } = \frac { A C } { A E }$,
$\therefore \triangle A B C \backsim \triangle A D E$,
$\therefore \angle B A C = \angle D A E$,$\therefore \angle B A D = \angle C A E$。
$\because \frac { A B } { A D } = \frac { A C } { A E }$,$\therefore \frac { A B } { A C } = \frac { A D } { A E }$,$\therefore \triangle A B D \backsim \triangle A C E$。
7. (2024秋·龙华区期中)如图,矩形$ABCD$中,$E$为$BC$上一点,$DF\perp AE$于点$F$.
(1)证明$\triangle ABE\backsim \triangle DFA$;
(2)若$AB=3,AD=6,BE=4$,求$DF$的长.

(1)证明:$\because$四边形$A B C D$是矩形,
$\therefore A D // B C$,$\angle B = 90 ^ { \circ }$,$\therefore \angle A E B = \angle D A E$。
$\because D F \perp A E$,$\therefore \angle D A F + \angle A D F = \angle D A F + \angle E A B = 90 ^ { \circ }$,
$\therefore \angle A D F = \angle E A B$,$\therefore \triangle A B E \backsim \triangle D F A$。
(2)解:$\because A B = 3$,$B E = 4$,$\therefore$由勾股定理得$A E = 5$。
$\because \triangle A B E \backsim \triangle D F A$,$\therefore \frac { A E } { A B } = \frac { A D } { D F }$,即$\frac { 5 } { 3 } = \frac { 6 } { D F }$,$\therefore DF=$
3.6
答案: (1)证明:$\because$四边形$A B C D$是矩形,
$\therefore A D // B C$,$\angle B = 90 ^ { \circ }$,$\therefore \angle A E B = \angle D A E$。
$\because D F \perp A E$,$\therefore \angle D A F + \angle A D F = \angle D A F + \angle E A B = 90 ^ { \circ }$,
$\therefore \angle A D F = \angle E A B$,$\therefore \triangle A B E \backsim \triangle D F A$。
(2)解:$\because A B = 3$,$B E = 4$,$\therefore$由勾股定理得$A E = 5$。
$\because \triangle A B E \backsim \triangle D F A$,$\therefore \frac { A E } { A B } = \frac { A D } { D F }$,即$\frac { 5 } { 3 } = \frac { 6 } { D F }$,$\therefore D F = 3.6$。

查看更多完整答案,请扫码查看

关闭