2025年广东名师讲练通九年级数学全一册北师大版深圳专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年广东名师讲练通九年级数学全一册北师大版深圳专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年广东名师讲练通九年级数学全一册北师大版深圳专版》

第75页
3. 如图,$CD = 2BC$,$ED = 2AC$,$BC // DE$,点$A$,$C$,$D$在同一条直线上. 求证:$\triangle ABC \backsim \triangle ECD$.
证明: $\because BC// DE$,
$\therefore ∠ACB =
∠CDE
$.
$\because CD = 2BC$, $ED = 2AC$,
$\therefore BC:CD = 1:2$, $AC:ED = 1:2$,
$\therefore
\frac{BC}{CD}=\frac{AC}{ED}
$,
$\therefore △ABC\backsim △ECD$.
答案: 证明: $\because BC// DE$,
$\therefore ∠ACB = ∠CDE$.
$\because CD = 2BC$, $ED = 2AC$,
$\therefore BC:CD = 1:2$, $AC:ED = 1:2$,
$\therefore △ABC\backsim △ECD$.
4. 如图,已知$∠DAB = ∠ECB$,$∠ABD = ∠CBE$. 求证:$\triangle ABC \backsim \triangle DBE$.
证明: $\because ∠DAB = ∠ECB$, $∠ABD = ∠CBE$,
$\therefore$
$\triangle ABD\backsim \triangle CBE$
,$\therefore$
$\frac{AB}{CB} = \frac{BD}{BE}$
,即
$\frac{AB}{BD} = \frac{BC}{BE}$
.
$\because ∠ABC = ∠ABD + ∠DBC$, $∠DBE = ∠DBC + ∠CBE$,
$\therefore$
$∠ABC = ∠DBE$
,$\therefore \triangle ABC\backsim \triangle DBE$.
答案: 证明: $\because ∠DAB = ∠ECB$, $∠ABD = ∠CBE$,
$\therefore △ABD\backsim △CBE$, $\therefore \frac{AB}{CB} = \frac{BD}{BE}$, 即 $\frac{AB}{BD} = \frac{BC}{BE}$.
$\because ∠ABC = ∠ABD + ∠DBC$, $∠DBE = ∠DBC + ∠CBE$,
$\therefore ∠ABC = ∠DBE$, $\therefore △ABC\backsim △DBE$.
5. 如图,$D$,$E$分别为$AB$,$AC$边上两点,且$AD = 5$,$BD = 3$,$AE = 4$,$CE = 6$. 求证:$\triangle ADE \backsim \triangle ACB$.
证明: $\because AD = 5$, $BD = 3$, $AE = 4$, $CE = 6$,
$\therefore AB = AD + BD =$
8
, $AC = AE + CE =$
10
,
$\therefore \frac{AE}{AB} = \frac{4}{8} =$
$\frac{1}{2}$
, $\frac{AD}{AC} = \frac{5}{10} =$
$\frac{1}{2}$
, $\therefore \frac{AE}{AB} = \frac{AD}{AC}$.
$∠A = ∠A$
, $\therefore △ADE\backsim △ACB$.
答案: 证明: $\because AD = 5$, $BD = 3$, $AE = 4$, $CE = 6$,
$\therefore AB = AD + BD = 8$, $AC = AE + CE = 10$,
$\therefore \frac{AE}{AB} = \frac{4}{8} = \frac{1}{2}$, $\frac{AD}{AC} = \frac{5}{10} = \frac{1}{2}$, $\therefore \frac{AE}{AB} = \frac{AD}{AC}$.
又 $∠A = ∠A$, $\therefore △ADE\backsim △ACB$.
6. 如图,点$E$,$F$分别在正方形$ABCD$的边$BC$,$CD$上,$BE = 3$,$EC = 6$,$CF = 2$. 求证:$\triangle ABE \backsim \triangle ECF$.
答案: 证明: $\because BE = 3$, $EC = 6$, $CF = 2$, $\therefore BC = 3 + 6 = 9$.
$\because$ 四边形 $ABCD$ 是正方形, $\therefore AB = BC = 9$, $∠B = ∠C = 90°$.
$\because \frac{AB}{CE} = \frac{9}{6} = \frac{3}{2}$, $\frac{BE}{CF} = \frac{3}{2}$, $\therefore \frac{AB}{CE} = \frac{BE}{CF}$, $\therefore △ABE\backsim △ECF$.
7. 如图,在$\triangle ABC$中,$∠C = 90^{\circ}$,$BC = 8cm$,$AC = 6cm$,点$Q$从点$B$出发,沿$BC$方向以$2cm/s$的速度移动,点$P$从点$C$出发,沿$CA$方向以$1cm/s$的速度移动,若点$Q$,$P$分别同时从点$B$,$C$出发,试探究经过多少秒后,以点$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似?

经过
$\frac{12}{5}$秒或$\frac{32}{11}$秒
后,以点$C$,$P$,$Q$为顶点的三角形与$\triangle ABC$相似.
答案: 解: 设经过 $x$ 秒后, 两三角形相似. 由题意, 得 $BQ = 2x$, $CP = x$, $\therefore CQ = 8 - 2x$.
①当 $\frac{CQ}{CB} = \frac{CP}{CA}$ 时, $△PQC\backsim △ABC$,
$\therefore \frac{8 - 2x}{8} = \frac{x}{6}$, 解得 $x = \frac{12}{5}$.
②当 $\frac{CQ}{CA} = \frac{CP}{CB}$ 时, $△PQC\backsim △BAC$,
$\therefore \frac{8 - 2x}{6} = \frac{x}{8}$, 解得 $x = \frac{32}{11}$.
$\therefore$ 经过 $\frac{12}{5}$ 秒或 $\frac{32}{11}$ 秒时, 以点 $C$, $P$, $Q$ 为顶点的三角形与 $△ABC$ 相似.

查看更多完整答案,请扫码查看

关闭