2025年自我提升与评价九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年自我提升与评价九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年自我提升与评价九年级数学上册人教版》

第104页
4. 如图,OA是⊙O的半径,BC是⊙O的弦,OA⊥BC于点D,AE是⊙O的切线,AE交OC的延长线于点E.若∠AOC= 45°,BC= 4,则线段AE的长为
2√2
.
答案: 2√2
5. 如图,在Rt△ABC中,∠C= 90°,AC= BC,点O在AB上,以点O为圆心,OA的长为半径的半圆分别交AC,BC,AB于点D,E,F,且E是$\widehat{DF}$的中点.求证:BC是半圆O的切线.
答案: 证明:连接OE,
∵△ABC是等腰直角三角形,∠C=90°,
∴∠BAC=∠ABC=45°.
∵E是$\widehat{DF}$的中点,
∴$\widehat{DE}=\widehat{EF}$,
∴∠DAE=∠EAF(等弧所对的圆周角相等),即AE平分∠BAC.
∵∠BAC=45°,
∴∠BAE=$\frac{1}{2}$∠BAC=22.5°.
∵OA=OE(半圆半径),
∴∠OEA=∠BAE=22.5°(等边对等角).
在△AOE中,∠AOE=180°-∠OEA-∠BAE=180°-22.5°-22.5°=135°.
∵点O在AB上,
∴∠AOE+∠EOB=180°(平角定义),
∴∠EOB=180°-∠AOE=180°-135°=45°.
在△OEB中,∠OEB=180°-∠EOB-∠ABC=180°-45°-45°=90°,
∴OE⊥BC.
∵OE是半圆O的半径,E是BC与半圆O的交点,
∴BC是半圆O的切线(切线的判定定理).
结论:BC是半圆O的切线.
6. 如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P.若AC= PC= 3$\sqrt{3}$,求PB的长.
答案: 3

查看更多完整答案,请扫码查看

关闭