2025年世纪金榜高中全程复习方略高中数学A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年世纪金榜高中全程复习方略高中数学A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第98页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
(1)函数$f(x)=\sin ^{2}x+\sqrt{3}\sin x\cos x-\frac{1}{2}$可以化简为 ( )
A. $f(x)=\sin(2x - \frac{\pi }{3})$
B. $f(x)=\sin(2x - \frac{\pi }{6})$
C. $f(x)=\sin(2x + \frac{\pi }{3})$
D. $f(x)=\sin(2x + \frac{\pi }{6})$
A. $f(x)=\sin(2x - \frac{\pi }{3})$
B. $f(x)=\sin(2x - \frac{\pi }{6})$
C. $f(x)=\sin(2x + \frac{\pi }{3})$
D. $f(x)=\sin(2x + \frac{\pi }{6})$
答案:
B $f(x)=\sin^{2}x+\sqrt{3}\sin x\cos x-\frac{1}{2}=\frac{1 - \cos2x}{2}+\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}=\frac{\sqrt{3}}{2}\sin2x-\frac{1}{2}\cos2x=\sin(2x-\frac{\pi}{6})$.
(2)若$\alpha \in (0,\frac{\pi }{2})$,$\tan 2\alpha =\frac{\cos \alpha }{2 - \sin \alpha }$,则$\tan \alpha$等于 ( )
A. $\frac{\sqrt{15}}{15}$
B. $\frac{\sqrt{5}}{5}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{15}}{3}$
A. $\frac{\sqrt{15}}{15}$
B. $\frac{\sqrt{5}}{5}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{15}}{3}$
答案:
解法一:因为$\tan2\alpha=\frac{\sin2\alpha}{\cos2\alpha}=\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}$,且$\tan2\alpha=\frac{\cos\alpha}{2 - \sin\alpha}$,所以$\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}=\frac{\cos\alpha}{2 - \sin\alpha}$,解得$\sin\alpha=\frac{1}{4}$.因为$\alpha\in(0,\frac{\pi}{2})$,所以$\cos\alpha=\frac{\sqrt{15}}{4}$,$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{15}}{15}$.
解法二:因为$\tan2\alpha=\frac{2\tan\alpha}{1 - \tan^{2}\alpha}=\frac{\frac{2\sin\alpha}{\cos\alpha}}{1-\frac{\sin^{2}\alpha}{\cos^{2}\alpha}}=\frac{2\sin\alpha\cos\alpha}{\cos^{2}\alpha-\sin^{2}\alpha}=\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}$,且$\tan2\alpha=\frac{\cos\alpha}{2 - \sin\alpha}$,所以$\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}=\frac{\cos\alpha}{2 - \sin\alpha}$,解得$\sin\alpha=\frac{1}{4}$.因为$\alpha\in(0,\frac{\pi}{2})$,所以$\cos\alpha=\frac{\sqrt{15}}{4}$,$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{15}}{15}$.
解法二:因为$\tan2\alpha=\frac{2\tan\alpha}{1 - \tan^{2}\alpha}=\frac{\frac{2\sin\alpha}{\cos\alpha}}{1-\frac{\sin^{2}\alpha}{\cos^{2}\alpha}}=\frac{2\sin\alpha\cos\alpha}{\cos^{2}\alpha-\sin^{2}\alpha}=\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}$,且$\tan2\alpha=\frac{\cos\alpha}{2 - \sin\alpha}$,所以$\frac{2\sin\alpha\cos\alpha}{1 - 2\sin^{2}\alpha}=\frac{\cos\alpha}{2 - \sin\alpha}$,解得$\sin\alpha=\frac{1}{4}$.因为$\alpha\in(0,\frac{\pi}{2})$,所以$\cos\alpha=\frac{\sqrt{15}}{4}$,$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\sqrt{15}}{15}$.
(3)已知$\sin \alpha + \cos \alpha =\frac{2\sqrt{3}}{3}$,则$\sin ^{2}(\alpha - \frac{\pi }{4})=$____________________.
答案:
【解析】因为$\sin\alpha+\cos\alpha=\frac{2\sqrt{3}}{3}$,两边同时平方得$\sin^{2}\alpha + 2\sin\alpha\cos\alpha+\cos^{2}\alpha=\frac{4}{3}$,即$\sin2\alpha=\frac{1}{3}$,由降幂公式可知$\sin^{2}(\alpha-\frac{\pi}{4})=\frac{1 - \cos(2\alpha-\frac{\pi}{2})}{2}=\frac{1 - \sin2\alpha}{2}=\frac{1}{2}-\frac{1}{2}\sin2\alpha=\frac{1}{3}$.
答案:$\frac{1}{3}$
答案:$\frac{1}{3}$
对点训练
1. 化简:$\frac{2\cos ^{4}x - 2\cos ^{2}x + \frac{1}{2}}{2\tan(\frac{\pi }{4} - x)\sin ^{2}(\frac{\pi }{4} + x)}=$__________.
1. 化简:$\frac{2\cos ^{4}x - 2\cos ^{2}x + \frac{1}{2}}{2\tan(\frac{\pi }{4} - x)\sin ^{2}(\frac{\pi }{4} + x)}=$__________.
答案:
【解析】原式$=\frac{\frac{1}{2}(4\cos^{4}x - 4\cos^{2}x + 1)}{2\times\sin(\frac{\pi}{4}-x)\cdot\cos^{2}(\frac{\pi}{4}-x)\div\cos(\frac{\pi}{4}-x)}=\frac{(2\cos^{2}x - 1)^{2}}{4\sin(\frac{\pi}{4}-x)\cos(\frac{\pi}{4}-x)}=\frac{\cos^{2}2x}{2\sin(\frac{\pi}{2}-2x)}=\frac{\cos^{2}2x}{2\cos2x}=\frac{1}{2}\cos2x$.
答案:$\frac{1}{2}\cos2x$
答案:$\frac{1}{2}\cos2x$
2. 化简:$\sin ^{2}\alpha \sin ^{2}\beta + \cos ^{2}\alpha \cos ^{2}\beta - \frac{1}{2}\cos 2\alpha \cos 2\beta =$__________.
答案:
【解析】原式$=\frac{1 - \cos2\alpha}{2}\cdot\frac{1 - \cos2\beta}{2}+\frac{1 + \cos2\alpha}{2}\cdot\frac{1 + \cos2\beta}{2}-\frac{1}{2}\cos2\alpha\cos2\beta=\frac{1 - \cos2\beta-\cos2\alpha+\cos2\alpha\cos2\beta}{4}+\frac{1 + \cos2\beta+\cos2\alpha+\cos2\alpha\cos2\beta}{4}-\frac{1}{2}\cos2\alpha\cdot\cos2\beta=\frac{1}{2}+\frac{1}{2}\cos2\alpha\cos2\beta-\frac{1}{2}\cos2\alpha\cos2\beta=\frac{1}{2}$.
答案:$\frac{1}{2}$
答案:$\frac{1}{2}$
(1)$\sin 18^{\circ}\cos 36^{\circ}=$__________.
答案:
【解析】原式$=\frac{2\sin18^{\circ}\cos18^{\circ}\cos36^{\circ}}{2\cos18^{\circ}}=\frac{2\sin36^{\circ}\cos36^{\circ}}{4\cos18^{\circ}}=\frac{\sin72^{\circ}}{4\cos18^{\circ}}=\frac{1}{4}$.
答案:$\frac{1}{4}$
答案:$\frac{1}{4}$
(2)$\cos ^{4}\frac{\pi }{12}-\sin ^{4}\frac{\pi }{12}=$__________.
答案:
原式$=(\cos^{2}\frac{\pi}{12}-\sin^{2}\frac{\pi}{12})(\cos^{2}\frac{\pi}{12}+\sin^{2}\frac{\pi}{12})=\cos^{2}\frac{\pi}{12}-\sin^{2}\frac{\pi}{12}=\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$.
答案:$\frac{\sqrt{3}}{2}$
答案:$\frac{\sqrt{3}}{2}$
(3)$\frac{1}{2\sin 10^{\circ}}-\frac{\sqrt{3}}{2\cos 10^{\circ}}=$__________.
答案:
原式$=\frac{\cos10^{\circ}-\sqrt{3}\sin10^{\circ}}{2\sin10^{\circ}\cdot\cos10^{\circ}}=\frac{2(\frac{1}{2}\cos10^{\circ}-\frac{\sqrt{3}}{2}\sin10^{\circ})}{\sin20^{\circ}}=\frac{2\sin(30^{\circ}-10^{\circ})}{\sin20^{\circ}}=2$.
答案:2
答案:2
(1)(2023·新高考Ⅰ卷)已知$\sin(\alpha - \beta )=\frac{1}{3},\cos \alpha \sin \beta =\frac{1}{6}$,则$\cos(2\alpha + 2\beta )=$ ( )
A. $\frac{7}{9}$
B. $\frac{1}{9}$
C. $-\frac{1}{9}$
D. $-\frac{7}{9}$
A. $\frac{7}{9}$
B. $\frac{1}{9}$
C. $-\frac{1}{9}$
D. $-\frac{7}{9}$
答案:
B 因为$\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta=\frac{1}{3}$,$\cos\alpha\sin\beta=\frac{1}{6}$,所以$\sin\alpha\cos\beta=\frac{1}{2}$,所以$\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta=\frac{2}{3}$,所以$\cos(2\alpha + 2\beta)=\cos2(\alpha+\beta)=1 - 2\sin^{2}(\alpha+\beta)=1 - 2\times(\frac{2}{3})^{2}=\frac{1}{9}$.
(2)(一题多法)已知$\sin(\alpha - \frac{\pi }{4})=\frac{3}{5},\pi <\alpha <\frac{5\pi }{4}$,则$\cos(2\alpha - \frac{\pi }{4})=$__________.
答案:
【解析】因为$\sin(\alpha-\frac{\pi}{4})=\frac{3}{5}$,$\frac{3\pi}{4}<\alpha-\frac{\pi}{4}<\pi$,所以$\cos(\alpha-\frac{\pi}{4})=-\frac{4}{5}$.
解法一:因为$\cos\alpha=\cos[(\alpha-\frac{\pi}{4})+\frac{\pi}{4}]=\cos(\alpha-\frac{\pi}{4})\cos\frac{\pi}{4}-\sin(\alpha-\frac{\pi}{4})\sin\frac{\pi}{4}=-\frac{4}{5}\times\frac{\sqrt{2}}{2}-\frac{3}{5}\times\frac{\sqrt{2}}{2}=-\frac{7\sqrt{2}}{10}$,$\sin\alpha=\sin[(\alpha-\frac{\pi}{4})+\frac{\pi}{4}]=\sin(\alpha-\frac{\pi}{4})\cos\frac{\pi}{4}+\cos(\alpha-\frac{\pi}{4})\sin\frac{\pi}{4}=\frac{3}{5}\times\frac{\sqrt{2}}{2}-\frac{4}{5}\times\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$,所以$\cos(2\alpha-\frac{\pi}{4})=\cos[(\alpha-\frac{\pi}{4})+\alpha]=\cos(\alpha-\frac{\pi}{4})\cos\alpha-\sin(\alpha-\frac{\pi}{4})\sin\alpha=-\frac{4}{5}\times(-\frac{7\sqrt{2}}{10})-\frac{3}{5}\times(-\frac{\sqrt{2}}{10})=\frac{31\sqrt{2}}{50}$.
解法二:$\cos(2\alpha-\frac{\pi}{4})=\cos2\alpha\cos\frac{\pi}{4}+\sin2\alpha\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}(\cos2\alpha+\sin2\alpha)$,$\cos2\alpha=-\sin(2\alpha-\frac{\pi}{2})=-\sin2(\alpha-\frac{\pi}{4})=-2\sin(\alpha-\frac{\pi}{4})\cos(\alpha-\frac{\pi}{4})=-2\times\frac{3}{5}\times(-\frac{4}{5})=\frac{24}{25}$,$\sin2\alpha=\cos(2\alpha-\frac{\pi}{2})=1 - 2\sin^{2}(\alpha-\frac{\pi}{4})=1 - 2\times\frac{9}{25}=\frac{7}{25}$,所以原式$=\frac{\sqrt{2}}{2}\times(\frac{24}{25}+\frac{7}{25})=\frac{31\sqrt{2}}{50}$.
答案:$\frac{31\sqrt{2}}{50}$
解法一:因为$\cos\alpha=\cos[(\alpha-\frac{\pi}{4})+\frac{\pi}{4}]=\cos(\alpha-\frac{\pi}{4})\cos\frac{\pi}{4}-\sin(\alpha-\frac{\pi}{4})\sin\frac{\pi}{4}=-\frac{4}{5}\times\frac{\sqrt{2}}{2}-\frac{3}{5}\times\frac{\sqrt{2}}{2}=-\frac{7\sqrt{2}}{10}$,$\sin\alpha=\sin[(\alpha-\frac{\pi}{4})+\frac{\pi}{4}]=\sin(\alpha-\frac{\pi}{4})\cos\frac{\pi}{4}+\cos(\alpha-\frac{\pi}{4})\sin\frac{\pi}{4}=\frac{3}{5}\times\frac{\sqrt{2}}{2}-\frac{4}{5}\times\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$,所以$\cos(2\alpha-\frac{\pi}{4})=\cos[(\alpha-\frac{\pi}{4})+\alpha]=\cos(\alpha-\frac{\pi}{4})\cos\alpha-\sin(\alpha-\frac{\pi}{4})\sin\alpha=-\frac{4}{5}\times(-\frac{7\sqrt{2}}{10})-\frac{3}{5}\times(-\frac{\sqrt{2}}{10})=\frac{31\sqrt{2}}{50}$.
解法二:$\cos(2\alpha-\frac{\pi}{4})=\cos2\alpha\cos\frac{\pi}{4}+\sin2\alpha\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}(\cos2\alpha+\sin2\alpha)$,$\cos2\alpha=-\sin(2\alpha-\frac{\pi}{2})=-\sin2(\alpha-\frac{\pi}{4})=-2\sin(\alpha-\frac{\pi}{4})\cos(\alpha-\frac{\pi}{4})=-2\times\frac{3}{5}\times(-\frac{4}{5})=\frac{24}{25}$,$\sin2\alpha=\cos(2\alpha-\frac{\pi}{2})=1 - 2\sin^{2}(\alpha-\frac{\pi}{4})=1 - 2\times\frac{9}{25}=\frac{7}{25}$,所以原式$=\frac{\sqrt{2}}{2}\times(\frac{24}{25}+\frac{7}{25})=\frac{31\sqrt{2}}{50}$.
答案:$\frac{31\sqrt{2}}{50}$
(1)已知$\alpha$为锐角,且$\sin \alpha \cdot (\sqrt{3}-\tan 10^{\circ}) = 1$,则$\alpha =$__________.
答案:
【解析】由已知得$\sin\alpha=\frac{1}{\sqrt{3}-\tan10^{\circ}}=\frac{1}{\sqrt{3}-\frac{\sin10^{\circ}}{\cos10^{\circ}}}=\frac{\cos10^{\circ}}{\sqrt{3}\cos10^{\circ}-\sin10^{\circ}}=\frac{\cos10^{\circ}}{2\sin50^{\circ}}=\frac{\sin80^{\circ}}{2\sin50^{\circ}}=\frac{2\sin40^{\circ}\cos40^{\circ}}{2\cos40^{\circ}}=\sin40^{\circ}$. 由于$\alpha$为锐角,所以$\alpha = 40^{\circ}$.
答案:$40^{\circ}$
答案:$40^{\circ}$
(2)已知$\sin \alpha =\frac{\sqrt{2}}{10},\cos \beta =\frac{3\sqrt{10}}{10}$,且$\alpha,\beta$为锐角,则$\alpha + 2\beta =$__________.
答案:
【解析】因为$\sin\alpha=\frac{\sqrt{2}}{10}$,且$\alpha$为锐角,所以$\cos\alpha=\sqrt{1 - \sin^{2}\alpha}=\sqrt{1-\frac{2}{100}}=\frac{7\sqrt{2}}{10}$,因为$\cos\beta=\frac{3\sqrt{10}}{10}$,且$\beta$为锐角,所以$\sin\beta=\sqrt{1 - \cos^{2}\beta}=\sqrt{1-\frac{90}{100}}=\frac{\sqrt{10}}{10}$,那么$\sin2\beta=2\sin\beta\cos\beta=2\times\frac{\sqrt{10}}{10}\times\frac{3\sqrt{10}}{10}=\frac{3}{5}$,$\cos2\beta=1 - 2\sin^{2}\beta=1 - 2\times(\frac{\sqrt{10}}{10})^{2}=\frac{4}{5}$,所以$\cos(\alpha + 2\beta)=\cos\alpha\cos2\beta-\sin\alpha\sin2\beta=\frac{7\sqrt{2}}{10}\times\frac{4}{5}-\frac{\sqrt{2}}{10}\times\frac{3}{5}=\frac{\sqrt{2}}{2}$,因为$\alpha\in(0,\frac{\pi}{2})$,$\beta\in(0,\frac{\pi}{2})$,所以$2\beta\in(0,\pi)$.所以$\alpha + 2\beta\in(0,\frac{3\pi}{2})$,故$\alpha + 2\beta=\frac{\pi}{4}$.
答案:$\frac{\pi}{4}$
答案:$\frac{\pi}{4}$
查看更多完整答案,请扫码查看