2025年世纪金榜高中全程复习方略高中数学A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年世纪金榜高中全程复习方略高中数学A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第96页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
[例4]化简:
(1)$3\cos x + 3\sin x$;
(2)$\sin\frac{\pi}{12} - \sqrt{3}\cos\frac{\pi}{12}$;
(3)$3\sqrt{15}\sin x + 3\sqrt{5}\cos x$。
(1)$3\cos x + 3\sin x$;
(2)$\sin\frac{\pi}{12} - \sqrt{3}\cos\frac{\pi}{12}$;
(3)$3\sqrt{15}\sin x + 3\sqrt{5}\cos x$。
答案:
【解析】
(1)原式$=3\sqrt{2}(\frac{1}{\sqrt{2}}\cos x+\frac{1}{\sqrt{2}}\sin x)=3\sqrt{2}\cos(x-\frac{\pi}{4})$.
(2)方法一:原式$=2(\frac{1}{2}\sin\frac{\pi}{12}-\frac{\sqrt{3}}{2}\cos\frac{\pi}{12})=2(\sin\frac{\pi}{6}\sin\frac{\pi}{12}-\cos\frac{\pi}{6}\cos\frac{\pi}{12})=-2\cos(\frac{\pi}{6}+\frac{\pi}{12})=-2\cos\frac{\pi}{4}=-\sqrt{2}$.
方法二:原式$=2(\frac{1}{2}\sin\frac{\pi}{12}-\frac{\sqrt{3}}{2}\cos\frac{\pi}{12})=2(\cos\frac{\pi}{3}\sin\frac{\pi}{12}-\sin\frac{\pi}{3}\cos\frac{\pi}{12})=-2\sin(\frac{\pi}{3}-\frac{\pi}{12})=-2\sin\frac{\pi}{4}=-\sqrt{2}$.
(3)$3\sqrt{15}\sin x+3\sqrt{5}\cos x=6\sqrt{5}(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x)=6\sqrt{5}(\sin x\cos\frac{\pi}{6}+\cos x\sin\frac{\pi}{6})=6\sqrt{5}\sin(x+\frac{\pi}{6})$.
(1)原式$=3\sqrt{2}(\frac{1}{\sqrt{2}}\cos x+\frac{1}{\sqrt{2}}\sin x)=3\sqrt{2}\cos(x-\frac{\pi}{4})$.
(2)方法一:原式$=2(\frac{1}{2}\sin\frac{\pi}{12}-\frac{\sqrt{3}}{2}\cos\frac{\pi}{12})=2(\sin\frac{\pi}{6}\sin\frac{\pi}{12}-\cos\frac{\pi}{6}\cos\frac{\pi}{12})=-2\cos(\frac{\pi}{6}+\frac{\pi}{12})=-2\cos\frac{\pi}{4}=-\sqrt{2}$.
方法二:原式$=2(\frac{1}{2}\sin\frac{\pi}{12}-\frac{\sqrt{3}}{2}\cos\frac{\pi}{12})=2(\cos\frac{\pi}{3}\sin\frac{\pi}{12}-\sin\frac{\pi}{3}\cos\frac{\pi}{12})=-2\sin(\frac{\pi}{3}-\frac{\pi}{12})=-2\sin\frac{\pi}{4}=-\sqrt{2}$.
(3)$3\sqrt{15}\sin x+3\sqrt{5}\cos x=6\sqrt{5}(\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x)=6\sqrt{5}(\sin x\cos\frac{\pi}{6}+\cos x\sin\frac{\pi}{6})=6\sqrt{5}\sin(x+\frac{\pi}{6})$.
对点训练
1. $\cos(\alpha - 35^{\circ})\cos(25^{\circ} + \alpha) + \sin(\alpha - 35^{\circ})\sin(25^{\circ} + \alpha)$的值为 ( )
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{2}$
1. $\cos(\alpha - 35^{\circ})\cos(25^{\circ} + \alpha) + \sin(\alpha - 35^{\circ})\sin(25^{\circ} + \alpha)$的值为 ( )
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{2}$
答案:
B 由两角差的余弦公式,得$\cos(\alpha - 35^{\circ})\cos(25^{\circ}+\alpha)+\sin(\alpha - 35^{\circ})\sin(25^{\circ}+\alpha)=\cos[(\alpha - 35^{\circ})-(25^{\circ}+\alpha)]=\cos(-60^{\circ})=\frac{1}{2}$.
2. 若$\alpha + \beta = \frac{2\pi}{3}$,则$\sqrt{3}\tan\alpha\tan\beta - \tan\alpha - \tan\beta$的值为________。
答案:
【解析】因为$\alpha+\beta=\frac{2\pi}{3}$,所以$\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}=\tan(\pi-\frac{\pi}{3})=-\sqrt{3}$,所以$\tan\alpha+\tan\beta=-\sqrt{3}(1-\tan\alpha\tan\beta)$,所以$\sqrt{3}\tan\alpha\tan\beta-\tan\alpha-\tan\beta=\sqrt{3}\tan\alpha\tan\beta-(\tan\alpha+\tan\beta)=\sqrt{3}\tan\alpha\tan\beta+\sqrt{3}-\sqrt{3}\tan\alpha\tan\beta=\sqrt{3}$.答案:$\sqrt{3}$
3. (2022·北京高考)若函数$f(x) = A\sin x - \sqrt{3}\cos x$的一个零点为$\frac{\pi}{3}$,则$A =$________;$f(\frac{\pi}{12}) =$________。
答案:
【解析】依题意得$f(\frac{\pi}{3})=A\times\frac{\sqrt{3}}{2}-\sqrt{3}\times\frac{1}{2}=0$,解得$A = 1$,所以$f(x)=\sin x-\sqrt{3}\cos x=2\sin(x-\frac{\pi}{3})$,所以$f(\frac{\pi}{12})=2\sin(\frac{\pi}{12}-\frac{\pi}{3})=-\sqrt{2}$.答案:$1\ -\sqrt{2}$
[例5](1)(2024·株洲模拟)已知$\theta\in(0,\frac{\pi}{2})$,$\sin(\theta - \frac{\pi}{4}) = \frac{\sqrt{5}}{5}$,则$\tan\theta =$ ( )
A. 2
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$
A. 2
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$
答案:
C 因为$\theta\in(0,\frac{\pi}{2})$,所以$-\frac{\pi}{4}\lt\theta-\frac{\pi}{4}\lt\frac{\pi}{4}$,故$\cos(\theta-\frac{\pi}{4})=\sqrt{1-\sin^{2}(\theta-\frac{\pi}{4})}=\frac{2\sqrt{5}}{5}$,所以$\sin\theta=\sin[(\theta-\frac{\pi}{4})+\frac{\pi}{4}]=\frac{\sqrt{2}}{2}[\sin(\theta-\frac{\pi}{4})+\cos(\theta-\frac{\pi}{4})]=\frac{3\sqrt{10}}{10}$,故$\cos\theta=\sqrt{1-\sin^{2}\theta}=\frac{\sqrt{10}}{10}$,因此$\tan\theta=\frac{\sin\theta}{\cos\theta}=3$.
(2)已知$\alpha,\beta\in(\frac{\pi}{3},\frac{5\pi}{6})$,若$\sin(\alpha + \frac{\pi}{6}) = \frac{4}{5}$,$\cos(\beta - \frac{5\pi}{6}) = \frac{5}{13}$,则$\sin(\alpha - \beta)$的值为 ( )
A. $\frac{16}{65}$
B. $\frac{33}{65}$
C. $\frac{56}{65}$
D. $\frac{63}{65}$
A. $\frac{16}{65}$
B. $\frac{33}{65}$
C. $\frac{56}{65}$
D. $\frac{63}{65}$
答案:
A 由题意可得$\alpha+\frac{\pi}{6}\in(\frac{\pi}{2},\pi)$,$\beta-\frac{5\pi}{6}\in(-\frac{\pi}{2},0)$,所以$\cos(\alpha+\frac{\pi}{6})=-\frac{3}{5}$,$\sin(\beta-\frac{5\pi}{6})=-\frac{12}{13}$,所以$\sin(\alpha-\beta)=-\sin[(\alpha+\frac{\pi}{6})-(\beta-\frac{5\pi}{6})]=-\frac{4}{5}\times\frac{5}{13}+(-\frac{3}{5})\times(-\frac{12}{13})=\frac{16}{65}$.
对点训练
1. (2024·烟台模拟)已知$\tan(\alpha + \beta) = \frac{1}{2}$,$\tan(\alpha - \beta) = \frac{1}{3}$,则$\tan(\pi - 2\alpha) =$ ( )
A. 1
B. -1
C. 2
D. -2
1. (2024·烟台模拟)已知$\tan(\alpha + \beta) = \frac{1}{2}$,$\tan(\alpha - \beta) = \frac{1}{3}$,则$\tan(\pi - 2\alpha) =$ ( )
A. 1
B. -1
C. 2
D. -2
答案:
B 因为$2\alpha=(\alpha+\beta)+(\alpha-\beta)$,所以$\tan2\alpha=\frac{\tan(\alpha+\beta)+\tan(\alpha-\beta)}{1-\tan(\alpha+\beta)\tan(\alpha-\beta)}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}=1$.又$\tan(\pi - 2\alpha)=-\tan2\alpha$,所以$\tan(\pi - 2\alpha)=-1$.
2. 已知$0\lt\alpha\lt\frac{\pi}{2}\lt\beta\lt\pi$,$\tan\alpha = \frac{4}{3}$,$\cos(\beta - \alpha) = \frac{\sqrt{2}}{10}$,则$\sin\alpha =$________,$\cos\beta =$________。
答案:
【解析】因为$0\lt\alpha\lt\frac{\pi}{2}$,且$\tan\alpha=\frac{4}{3}$,所以$\sin\alpha=\frac{4}{5},\cos\alpha=\frac{3}{5}$,由$0\lt\alpha\lt\frac{\pi}{2}\lt\beta\lt\pi$,则$0\lt\beta-\alpha\lt\pi$,又因为$\cos(\beta-\alpha)=\frac{\sqrt{2}}{10}$,则$\sin(\beta-\alpha)=\frac{7\sqrt{2}}{10}$,所以$\cos\beta=\cos[(\beta-\alpha)+\alpha]=\cos(\beta-\alpha)\cos\alpha-\sin(\beta-\alpha)\sin\alpha=\frac{\sqrt{2}}{10}\times\frac{3}{5}-\frac{7\sqrt{2}}{10}\times\frac{4}{5}=-\frac{\sqrt{2}}{2}$.答案:$\frac{4}{5}\ -\frac{\sqrt{2}}{2}$
查看更多完整答案,请扫码查看