2025年世纪金榜高中全程复习方略高中数学A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年世纪金榜高中全程复习方略高中数学A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年世纪金榜高中全程复习方略高中数学A版》

第46页
对点训练1. (2021·天津高考)设$a=\log_{2}0.3$,$b=\log_{\frac{1}{2}}0.4$,$c = 0.4^{0.3}$,则$a,b,c$的大小关系为 ( )
A. $a < b < c$
B. $c < a < b$
C. $b < c < a$
D. $a < c < b$
答案: D 因为$\log_{2}0.3<\log_{2}1 = 0$,所以$a < 0$. 因为$\log_{\frac{1}{2}}0.4=-\log_{2}0.4=\log_{2}\frac{5}{2}>\log_{2}2 = 1$,所以$b>1$. 因为$0 < 0.4^{0.3}<0.4^{0}=1$,所以$0 < c < 1$,所以$a < c < b$.
对点训练2. 设函数$f(x)=\begin{cases}2^{1 - x},x\leqslant1,\\1-\log_{2}x,x > 1,\end{cases}$则满足$f(x)\leqslant2$的$x$的取值范围是______________.
答案: 【解析】当$x\leqslant1$时,由$2^{1 - x}\leqslant2$得$1 - x\leqslant1$,所以$0\leqslant x\leqslant1$;当$x>1$时,由$1-\log_{2}x\leqslant2$得$x\geqslant\frac{1}{2}$,所以$x>1$. 综上,$x$的取值范围为$[0,+\infty)$.
答案:$[0,+\infty)$
对点训练3. 已知函数$f(x)=\log_{a}(8 - ax)(a > 0$,且$a\neq1)$,若$f(x)>1$在区间$[1,2]$上恒成立,则实数$a$的取值范围是________.
答案: 【解析】当$a>1$时,$f(x)=\log_{a}(8 - ax)$在$[1,2]$上是减函数,由$f(x)>1$在区间$[1,2]$上恒成立,得$f(x)_{\min}=\log_{a}(8 - 2a)>1$,解得$1 < a <\frac{8}{3}$;当$0 < a < 1$时,$f(x)$在$[1,2]$上是增函数,由$f(x)>1$在区间$[1,2]$上恒成立,得$f(x)_{\min}=\log_{a}(8 - a)>1$,得$8 - 2a<0$,$a>4$,故$a$不存在. 综上可知,实数$a$的取值范围是$(1,\frac{8}{3})$.
答案:$(1,\frac{8}{3})$
(1)(2023·上饶模拟)已知a = log₅3,b = 2¹/²,c = 7⁻⁰.⁵,则a,b,c的大小关系为 ( )
A. a>b>c
B. a>c>b
C. b>a>c
D. c>b>a
答案: C 因为$1 = log₅5 > log₅3 > log₅√5 = log₅5^(1/2) = 1/2,$即1/2 < a < 1,b = 2^(1/2) >$ 2^0 = 1,$$c = 7^(-0.5) = (1/7)^(1/2) $< (1/4)^(1/2) = 1/2,即0 < c < 1/2,所以b > a > c.
(2)已知a = log₅2,b = 1 / log₀.₁0.7,c = 0.7⁰.³,则a,b,c的大小关系为 ( )
A. a<c<b
B. a<b<c
C. b<c<a
D. c<a<b
答案: A 因为log₅1 < log₅2 < log₅√5,所以0 < a < 1/2,因为b = 1/log₀.₁0.7 = log₀.₇0.1 > log₀.₇0.7 = 1,所以b > 1,因为$0.7¹ < 0.7^0.3 < 0.7⁰,$所以0.7 < c < 1,所以a < c < b.
(2023·南开模拟)已知a = 2⁰.²,b = 1 - 2lg 2,c = 2 - log₃10,则a,b,c的大小关系是 ( )
A. b>c>a
B. a>b>c
C. a>c>b
D. b>a>c
答案: B 由题意可得:$a = 2^0.2 > 2^0 = 1,$b = 1 - 2lg2 = 1 - lg4,且0 < lg4 < 1,则0 < b < 1,因为log₃10 > log₃9 = 2,则c = 2 - log₃10 < 0,所以a > b > c.
(1)(一题多法)x,y,z为正数,且2ˣ = 3ʸ = 5ᶻ,则 ( )
A. 2x<3y<5z
B. 5z<2x<3y
C. 3y<5z<2x
D. 3y<2x<5z
答案: D 解法一(特值法):取z = 1,则由$2^z = 3^y = 5^z$得x = log₂5,y = log₃5,所以2x = log₂25 < log₂32 = 5z,3y = log₃125 < log₃243 = 5z,所以5z最大. 取y = 1,则由2^x = 3得x = log₂3,所以2x = log₂9 > 3y. 综上可得,3y < 2x < 5z.
解法二(作差法):令2^x = 3^y = 5^z = k,由x,y,z为正数,知k > 1,则x = lgk/lg2,y = lgk/lg3,z = lgk/lg5. 因为k > 1,所以lgk > 0,所以2x - 3y = 2lgk/lg2 - 3lgk/lg3 = (lgk·(2lg3 - 3lg2))/(lg2·lg3) = (lgk·lg(9/8))/(lg2·lg3) > 0,故2x > 3y,2x - 5z = 2lgk/lg2 - 5lgk/lg5 = (lgk·(2lg5 - 5lg2))/(lg2·lg5) = (lgk·lg(25/32))/(lg2·lg5) < 0,故2x < 5z. 所以3y < 2x < 5z.
解法三(作商法):令2^x = 3^y = 5^z = k,由x,y,z为正数,知k > 1. 则x = lgk/lg2,y = lgk/lg3,z = lgk/lg5. 所以(2x)/(3y) = 2/3·lg3/lg2 = lg(9/8) > 1,即2x > 3y,(5z)/(2x) = 5/2·lg2/lg5 = lg(32/25) > 1,即5z > 2x. 所以5z > 2x > 3y.
解法四(函数法):令$2^x = 3^y = 5^z = k,$由x,y,z为正数,知k > 1,则x = lnk/ln2,y = lnk/ln3,z = lnk/ln5. 设函数f(t) = tlnk/lnt(t > 0,t ≠ 1),则f
(2) = 2lnk/ln2 = 2x,f
(3) = 3lnk/ln3 = 3y,f
(5) = 5lnk/ln5 = 5z. f'(t) = (lnk·lnt - 1/t·tlnk)/(lnt)² = ((lnt - 1)lnk)/(lnt)²,易得当t ∈ (e,+∞)时,f'(t) > 0,函数f(t)单调递增. 因为e < 3 < 4 < 5,所以f
(3) < f
(4) < f
(5). 又f
(2) = 2lnk/ln2 = 2×2lnk/2ln2 = 4lnk/ln4 = f
(4),所以f
(3) < f
(2) < f
(5),即3y < 2x < 5z.
(2)已知实数x,y,z∈R,且满足ln x / eˣ = y / eʸ = - z / eᶻ,y>1,则x,y,z的大小关系为 ( )
A. y>x>z
B. x>z>y
C. y>z>x
D. x>y>z
答案: A 因为$lnx/x = y/e^y = -z/e^z,$y > 1,则lnx > 0,-z > 0,即x > 1,z < 0,令f(x) = x - lnx,x > 1,则f'(x) = 1 - 1/x > 0,函数f(x)在(1,+∞)上单调递增,有f(x) > f
(1) = 1 > 0,即lnx < x,从而当x > 1,y > 1时,$y/e^y = lnx/x $< x/e^x,令g(t) = t/e^t,t > 1,$g'(t) = (1 - t)/e^t $< 0,g(t)在(1,+∞)上单调递减,则由x > 1,y > 1,$y/e^y $< x/e^x得y > x > 1,所以y > x > z.

查看更多完整答案,请扫码查看

关闭