2025年世纪金榜高中全程复习方略高中数学A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年世纪金榜高中全程复习方略高中数学A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第93页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
[例4] (1) (2023·黑龙江模拟)$\sin495^{\circ}=$ ( )
A. 1
B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{2}}{2}$
(2) 已知$x\in\mathbf{R}$,则下列等式恒成立的是 ( )
A. $\sin(3\pi - x)=-\sin x$
B. $\sin\frac{\pi - x}{2}=-\cos\frac{x}{2}$
C. $\cos(\frac{5\pi}{2}+3x)=\sin3x$
D. $\cos(\frac{3\pi}{2}-2x)=-\sin2x$
(3) 已知$\sin(\alpha+\frac{\pi}{12})=\frac{1}{3}$,则$\cos(\alpha+\frac{7}{12}\pi)$的值为________;$\sin(\frac{11}{12}\pi-\alpha)$的值为________.
A. 1
B. $-\frac{1}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{2}}{2}$
(2) 已知$x\in\mathbf{R}$,则下列等式恒成立的是 ( )
A. $\sin(3\pi - x)=-\sin x$
B. $\sin\frac{\pi - x}{2}=-\cos\frac{x}{2}$
C. $\cos(\frac{5\pi}{2}+3x)=\sin3x$
D. $\cos(\frac{3\pi}{2}-2x)=-\sin2x$
(3) 已知$\sin(\alpha+\frac{\pi}{12})=\frac{1}{3}$,则$\cos(\alpha+\frac{7}{12}\pi)$的值为________;$\sin(\frac{11}{12}\pi-\alpha)$的值为________.
答案:
(1)D $\sin495^{\circ}=\sin(360^{\circ}+135^{\circ})=\sin135^{\circ}=\sin(180^{\circ}-45^{\circ})=\sin45^{\circ}=\frac{\sqrt{2}}{2}$.
(2)D $\sin(3\pi - x)=\sin(\pi - x)=\sin x$,$\sin\frac{\pi - x}{2}=\sin(\frac{\pi}{2}-\frac{x}{2})=\cos\frac{x}{2}$,$\cos(\frac{5\pi}{2}+3x)=\cos(\frac{\pi}{2}+3x)=-\sin3x$,$\cos(\frac{3\pi}{2}-2x)=-\sin2x$.
(3)【解析】$\cos(\alpha+\frac{7\pi}{12})=\cos(\frac{\pi}{2}+\alpha+\frac{\pi}{12})=-\sin(\alpha+\frac{\pi}{12})=-\frac{1}{3}$.$\sin(\frac{11\pi}{12}-\alpha)=\sin[\pi-(\alpha+\frac{\pi}{12})]=\sin(\alpha+\frac{\pi}{12})=\frac{1}{3}$.
答案:$-\frac{1}{3}$ $\frac{1}{3}$
(1)D $\sin495^{\circ}=\sin(360^{\circ}+135^{\circ})=\sin135^{\circ}=\sin(180^{\circ}-45^{\circ})=\sin45^{\circ}=\frac{\sqrt{2}}{2}$.
(2)D $\sin(3\pi - x)=\sin(\pi - x)=\sin x$,$\sin\frac{\pi - x}{2}=\sin(\frac{\pi}{2}-\frac{x}{2})=\cos\frac{x}{2}$,$\cos(\frac{5\pi}{2}+3x)=\cos(\frac{\pi}{2}+3x)=-\sin3x$,$\cos(\frac{3\pi}{2}-2x)=-\sin2x$.
(3)【解析】$\cos(\alpha+\frac{7\pi}{12})=\cos(\frac{\pi}{2}+\alpha+\frac{\pi}{12})=-\sin(\alpha+\frac{\pi}{12})=-\frac{1}{3}$.$\sin(\frac{11\pi}{12}-\alpha)=\sin[\pi-(\alpha+\frac{\pi}{12})]=\sin(\alpha+\frac{\pi}{12})=\frac{1}{3}$.
答案:$-\frac{1}{3}$ $\frac{1}{3}$
1. $\frac{\tan(\pi-\alpha)\cos(2\pi-\alpha)\sin(-\alpha+\frac{3\pi}{2})}{\cos(-\alpha-\pi)\sin(-\pi-\alpha)}$的值为 ( )
A. $-2$
B. $-1$
C. 1
D. 2
A. $-2$
B. $-1$
C. 1
D. 2
答案:
B 原式$=\frac{-\tan\alpha\cdot\cos\alpha\cdot(-\cos\alpha)}{\cos(\pi+\alpha)\cdot[-\sin(\pi+\alpha)]}=\frac{\tan\alpha\cdot\cos^{2}\alpha}{-\cos\alpha\cdot\sin\alpha}=\frac{-\sin\alpha}{\cos\alpha}\cdot\frac{\cos\alpha}{\sin\alpha}=-1$.
2. (2023·茂名模拟)已知$\sin(\theta-\frac{\pi}{6})=\frac{1}{2}$,则$\cos(\theta+\frac{\pi}{3})=$ ( )
A. $-\frac{\sqrt{3}}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$
A. $-\frac{\sqrt{3}}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. $\frac{\sqrt{3}}{2}$
答案:
B $\cos(\theta+\frac{\pi}{3})=\cos(\theta-\frac{\pi}{6}+\frac{\pi}{2})=-\sin(\theta-\frac{\pi}{6})=-\frac{1}{2}$.
[例5] (1) 已知$\sin(\pi-\alpha)+\sin(\alpha-\frac{\pi}{2})=\frac{1}{2}$,则$\frac{\cos(\frac{3}{2}\pi+\alpha)}{1+\tan(-\alpha)}$的值为 ( )
A. $-\frac{3}{4}$
B. $\frac{3}{4}$
C. $-\frac{3}{16}$
D. $\frac{3}{16}$
(2) (2023·阳泉模拟)已知$\sin(\alpha+\frac{\pi}{6})=\frac{\sqrt{3}}{3}$,且$\alpha\in(-\frac{\pi}{4},\frac{\pi}{4})$,则$\sin(\frac{\pi}{3}-\alpha)=$________.
A. $-\frac{3}{4}$
B. $\frac{3}{4}$
C. $-\frac{3}{16}$
D. $\frac{3}{16}$
(2) (2023·阳泉模拟)已知$\sin(\alpha+\frac{\pi}{6})=\frac{\sqrt{3}}{3}$,且$\alpha\in(-\frac{\pi}{4},\frac{\pi}{4})$,则$\sin(\frac{\pi}{3}-\alpha)=$________.
答案:
(1)A 由已知得$\sin\alpha-\cos\alpha=\frac{1}{2}$,两边平方得$1 - 2\sin\alpha\cos\alpha=\frac{1}{4}$,解得$\sin\alpha\cos\alpha=\frac{3}{8}$,则原式$=\frac{\sin\alpha}{1-\tan\alpha}=\frac{\sin\alpha}{1-\frac{\sin\alpha}{\cos\alpha}}=\frac{\sin\alpha\cos\alpha}{\cos\alpha-\sin\alpha}=-\frac{3}{4}$.
(2)【解析】因为$\alpha\in(-\frac{\pi}{4},\frac{\pi}{4})$,所以$\alpha+\frac{\pi}{6}\in(-\frac{\pi}{12},\frac{5\pi}{12})$,故$\cos(\alpha+\frac{\pi}{6})>0$,所以$\cos(\alpha+\frac{\pi}{6})=\sqrt{1 - (\frac{\sqrt{3}}{3})^{2}}=\frac{\sqrt{6}}{3}$.$\sin(\frac{\pi}{3}-\alpha)=\sin[\frac{\pi}{2}-(\alpha+\frac{\pi}{6})]=\cos(\alpha+\frac{\pi}{6})=\frac{\sqrt{6}}{3}$.
答案:$\frac{\sqrt{6}}{3}$
(1)A 由已知得$\sin\alpha-\cos\alpha=\frac{1}{2}$,两边平方得$1 - 2\sin\alpha\cos\alpha=\frac{1}{4}$,解得$\sin\alpha\cos\alpha=\frac{3}{8}$,则原式$=\frac{\sin\alpha}{1-\tan\alpha}=\frac{\sin\alpha}{1-\frac{\sin\alpha}{\cos\alpha}}=\frac{\sin\alpha\cos\alpha}{\cos\alpha-\sin\alpha}=-\frac{3}{4}$.
(2)【解析】因为$\alpha\in(-\frac{\pi}{4},\frac{\pi}{4})$,所以$\alpha+\frac{\pi}{6}\in(-\frac{\pi}{12},\frac{5\pi}{12})$,故$\cos(\alpha+\frac{\pi}{6})>0$,所以$\cos(\alpha+\frac{\pi}{6})=\sqrt{1 - (\frac{\sqrt{3}}{3})^{2}}=\frac{\sqrt{6}}{3}$.$\sin(\frac{\pi}{3}-\alpha)=\sin[\frac{\pi}{2}-(\alpha+\frac{\pi}{6})]=\cos(\alpha+\frac{\pi}{6})=\frac{\sqrt{6}}{3}$.
答案:$\frac{\sqrt{6}}{3}$
1. 若$\alpha\in(0,\pi)$,$\sin(\pi-\alpha)+\cos\alpha=\frac{\sqrt{2}}{3}$,则$\sin\alpha-\cos\alpha$的值为 ( )
A. $\frac{\sqrt{2}}{3}$
B. $-\frac{\sqrt{2}}{3}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$
A. $\frac{\sqrt{2}}{3}$
B. $-\frac{\sqrt{2}}{3}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$
答案:
C 由诱导公式得,$\sin(\pi-\alpha)+\cos\alpha=\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{3}$,所以$(\sin\alpha+\cos\alpha)^{2}=1 + 2\sin\alpha\cos\alpha=\frac{2}{9}$,则$2\sin\alpha\cos\alpha=-\frac{7}{9}<0$,因为$\alpha\in(0,\pi)$,所以$\sin\alpha>0$,所以$\cos\alpha<0$,所以$\sin\alpha-\cos\alpha>0$,因为$(\sin\alpha-\cos\alpha)^{2}=1 - 2\sin\alpha\cos\alpha=\frac{16}{9}$,所以$\sin\alpha-\cos\alpha=\frac{4}{3}$.
2. (2023·成都模拟)已知$\sin\alpha = 2\cos\alpha$,则$\frac{\sin\alpha-\sin^{3}\alpha}{\sin(\alpha+\frac{\pi}{2})}=$ ( )
A. $\frac{3}{5}$
B. $\frac{2}{5}$
C. $-\frac{2}{5}$
D. $-\frac{3}{5}$
A. $\frac{3}{5}$
B. $\frac{2}{5}$
C. $-\frac{2}{5}$
D. $-\frac{3}{5}$
答案:
B 由$\sin\alpha=2\cos\alpha$,显然$\cos\alpha\neq0$,可得$\tan\alpha=2$.因为$\frac{\sin\alpha-\sin^{3}\alpha}{\sin(\alpha+\frac{\pi}{2})}=\frac{\sin\alpha(1 - \sin^{2}\alpha)}{\cos\alpha}=\frac{\sin\alpha\cdot\cos^{2}\alpha}{\cos\alpha}=\frac{\sin\alpha\cdot\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=\frac{\tan\alpha}{\tan^{2}\alpha+1}=\frac{2}{5}$.
查看更多完整答案,请扫码查看