2025年学霸提优大试卷九年级数学全一册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸提优大试卷九年级数学全一册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学霸提优大试卷九年级数学全一册苏科版》

第21页
14. (14分)如图,$AB是\odot O$的直径,圆内接四边形$ACDE的边CD与直径AB交于点F$,点$G在DE$的延长线上,$EA平分\angle CEG$.
(1)求证:$AB\perp CD$;
(2)若$AC = CE$,$AF = 9$,$BF = 1$,求$\triangle ACE$的面积.
答案:
14.
(1) $\because$四边形ACDE是$\odot O$的内接四边形,$\therefore$易证$\angle ACD=\angle AEG$。$\because EA$平分$\angle CEG$,$\therefore \angle AEG=\angle AEC$,$\therefore \angle ACD=\angle AEC$,$\therefore \overset{\frown }{AD}=\overset{\frown }{AC}$。$\because AB$为直径,$\therefore AB\perp CD$。
(2)如图,连接AD、OD,$\because AC=CE$,$\therefore \overset{\frown }{AC}=\overset{\frown }{CE}$。$\because \overset{\frown }{AC}=\overset{\frown }{AD}$,$\therefore \overset{\frown }{CE}=\overset{\frown }{AD}$,$\therefore CE=AD$,$\angle EAC=\angle DCA$,$\overset{\frown }{CE}-\overset{\frown }{DE}=\overset{\frown }{AD}-\overset{\frown }{DE}$,$\therefore \overset{\frown }{AE}=\overset{\frown }{DC}$,$\therefore AE=DC$。在$\triangle ACE$与$\triangle CAD$中,$\begin{cases}AC=CA\\CE=AD\\AE=CD\end{cases}$,$\therefore \triangle ACE\cong \triangle CAD(SSS)$,$\therefore S_{\triangle ACE}=S_{\triangle CAD}$。$\because AF=9$,$BF=1$,$\therefore AB=10$,$\therefore OD=OB=5$,$\therefore OF=4$,$\therefore DF=\sqrt{5^{2}-4^{2}}=3$,$\therefore DC=3× 2=6$,$\therefore S_{\triangle CAD}=\frac{1}{2}CD\cdot AF=\frac{1}{2}× 6× 9=27$,$\therefore S_{\triangle ACE}=27$。
                  
15. (12分)如图,$\triangle ABC是\odot O$的内接三角形,直径$HF交AC于点D$,$HF和BC的延长线交于点E$.
(1)若$HF\perp AB$,求证:$\angle OAD = \angle E$.
(2)若点$A$在下半圆上运动,则当点$A$运动到什么位置时,$\triangle CDE的外心在\triangle CDE$的一边上?请说明理由.
答案: 15.
(1)连接OB,$\because HF\perp AB$,$\therefore \overset{\frown }{BH}=\overset{\frown }{AH}$,$\therefore \angle AOH=\angle BOH=\frac{1}{2}\angle AOB$。又$\angle ACB=\frac{1}{2}\angle AOB$,$\therefore \angle AOH=\angle ACB$。$\because \angle AOD+\angle AOH=180^{\circ}$,$\angle ECD+\angle ACB=180^{\circ}$,$\therefore \angle AOD=\angle ECD$。又$\angle ODA=\angle CDE$,$\therefore \angle OAD=\angle E$。
(2)当AB是$\odot O$的直径或$AC\perp HF$时,$\triangle CDE$的外心在$\triangle CDE$的一边上。理由:易知$\angle DEC$不可能为$90^{\circ}$,分两种情况讨论:①当$\angle DCE=90^{\circ}$时,$\angle BCA=90^{\circ}$,$\therefore AB$为$\odot O$的直径。此时$\triangle CDE$的外心在$\triangle CDE$的边DE上;②当$\angle CDE=90^{\circ}$时,$\triangle CDE$是直角三角形,$\therefore AC\perp HF$。此时$\triangle CDE$的外心在$\triangle CDE$的边CE上。综上所述,当点A运动到使AB是$\odot O$的直径或$AC\perp HF$时,$\triangle CDE$的外心在$\triangle CDE$的一边上。
16. (14分)(2024·包头模拟)如图,四边形$ABCD是\odot O$的内接四边形,$BD是\odot O$的直径,点$F是CD$延长线上的一点,且$DA平分\angle BDF$,$AE\perp CD于点E$.
(1)求证:$AB = AC$;
(2)若$BD = 12$,$DE = 2$,求$BC$的长.
答案:
16.
(1) $\because DA$平分$\angle BDF$,$\therefore \angle ADF=\angle ADB$。$\because \angle ABC+\angle ADC=\angle ADC+\angle ADF=180^{\circ}$,$\therefore \angle ADF=\angle ABC$。$\because \angle ACB=\angle ADB$,$\therefore \angle ABC=\angle ACB$,$\therefore AB=AC$。
(2)如图,过点A作$AG\perp BD$,垂足为点G.$\because DA$平分$\angle BDF$,$AE\perp CF$,$AG\perp BD$,$\therefore AG=AE$,$\angle AGB=\angle AEC=90^{\circ}$。在$Rt\triangle AED$和$Rt\triangle AGD$中,$\begin{cases}AD=AD\\AE=AG\end{cases}$,$\therefore Rt\triangle AED\cong Rt\triangle AGD(HL)$,$\therefore GD=ED=2$。在$Rt\triangle AEC$和$Rt\triangle AGB$中,$\begin{cases}AC=AB\\AE=AG\end{cases}$,$\therefore Rt\triangle AEC\cong Rt\triangle AGB(HL)$,$\therefore BG=CE$。$\because BD=12$,$\therefore BG=BD - GD=12 - 2=10$,$\therefore CE=BG=10$,$\therefore CD=CE - DE=10 - 2=8$。$\because BD$是$\odot O$的直径,$\therefore \angle BCD=90^{\circ}$,$\therefore$在$Rt\triangle BCD$中,$BC=\sqrt{DB^{2}-DC^{2}}=\sqrt{12^{2}-8^{2}}=4\sqrt{5}$
                   BC

查看更多完整答案,请扫码查看

关闭