2025年创新设计高考总复习物理人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习物理人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年创新设计高考总复习物理人教版》

第248页
例1(多选)(2024·湖北武汉模拟)如图1所示,两平行光滑长直金属导轨水平放置,间距为 $L$,两导轨间存在磁感应强度大小为 $B$、方向竖直向下的匀强磁场。一质量为 $m$、电阻为 $R$、长度恰好等于导轨间宽度的导体棒 $ab$垂直于导轨放置。闭合开关S,导体棒 $ab$由静止开始运动,经过一段时间后达到最大速度。已知电源电动势为 $E$、内阻为 $\frac{1}{5}R$,不计金属轨道的电阻,则 ( )
图1
A.导体棒的最大速度为 $v=\frac{E}{2BL}$
B.开关S闭合瞬间,导体棒的加速度大小为 $\frac{5BL\cdot E}{6mR}$
C.导体棒的速度从零增加到最大速度的过程中,通过导体棒的电荷量为 $\frac{mE}{B^{2}L^{2}}$
D.导体棒的速度从零增加到最大速度的过程中,导体棒产生的焦耳热为 $\frac{mE^{2}}{2B^{2}L^{2}}$
答案: 增分微点10 电磁感应中的“杆—轨道”模型
例1 BC [当动生电动势和电源电动势相等时,电流为零,导体棒不再受安培力,做向右的匀速直线运动,此时速度最大,则有E = BLv,解得v = $\frac{E}{BL}$,故A错误;开关闭合瞬间,电路中的电流为I = $\frac{E}{R+\frac{R}{5}}$ = $\frac{5E}{6R}$,导体棒所受安培力为F = ILB = $\frac{5BL\cdot E}{6R}$,由牛顿第二定律可知导体棒的加速度为a = $\frac{5BL\cdot E}{6mR}$,故B正确;由动量定理得$\overline{I}$LB·t = mv,又q = $\overline{I}$t,联立解得q = $\frac{mE}{B^{2}L^{2}}$,故C正确;对电路应用能量守恒定律有qE = $Q_{总}$ + $\frac{1}{2}mv^{2}$,导体棒产生的焦耳热为$Q_{R}$ = $\frac{R}{R+\frac{R}{5}}Q_{总}$ = $\frac{5}{6}Q_{总}$,联立解得$Q_{R}$ = $\frac{5mE^{2}}{12B^{2}L^{2}}$,故D错误。]
例2 如图2所示,竖直放置的U形光滑导轨与一电容器串联。导轨平面有垂直于纸面的匀强磁场,金属棒 $ab$与导轨接触良好,由静止释放后沿导轨下滑。电容 $C$足够大,原来不带电,不计一切电阻。设导体棒的速度为 $v$、动能为 $E_k$、两端的电压为 $U_{ab}$、电容器带的电荷量为 $q$,它们与时间 $t$、位移 $x$ 的关系图像正确的是 ( )
图2

答案: 例2 B [设导轨间距为L,释放后电容器充电,电路中有充电电流i,棒受到向上的安培力,设瞬时加速度为a,根据牛顿第二定律得mg - iLB = ma,i = $\frac{\Delta Q}{\Delta t}$ = $\frac{C\cdot\Delta U}{\Delta t}$ = $\frac{C\cdot BL\Delta v}{\Delta t}$ = CBLa,由此得mg - BL·CBLa = ma,解得a = $\frac{mg}{m + B^{2}L^{2}C}$,可见棒的加速度不变,做匀加速直线运动,v = at,$U_{ab}$ = BLv = BLat,故A、C错误;$E_{k}$ = $\frac{1}{2}mv^{2}$ = $\frac{1}{2}m\times2ax$,故B正确;q = $CU_{ab}$ = BCLat,与时间成正比,而棒做匀加速运动,故与位移不是正比关系,故D错误。]

查看更多完整答案,请扫码查看

关闭