2025年金版教程高考科学复习解决方案数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版教程高考科学复习解决方案数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第94页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
4.(2023·江苏常州二模)已知$\sin\alpha - \sqrt{3}\cos\alpha = 1$,则$\sin(\frac{7\pi}{6} - 2\alpha)$的值为________.
答案:
答案 $\frac{1}{2}$
解析 已知$\sin\alpha - \sqrt{3}\cos\alpha = 1$,则$2(\frac{1}{2}\sin\alpha - \frac{\sqrt{3}}{2}\cos\alpha) = 2\sin(\alpha - \frac{\pi}{3}) = 1$,所以$\sin(\alpha - \frac{\pi}{3}) = \frac{1}{2}$,令$\beta = \alpha - \frac{\pi}{3}$,则$\alpha = \beta + \frac{\pi}{3}$,即$\sin\beta = \frac{1}{2}$,所以$\sin(\frac{7\pi}{6} - 2\alpha) = \sin(\frac{7\pi}{6} - 2\beta - \frac{2\pi}{3}) = \sin(\frac{\pi}{2} - 2\beta) = \cos2\beta = 1 - 2\sin^{2}\beta = \frac{1}{2}$.
解析 已知$\sin\alpha - \sqrt{3}\cos\alpha = 1$,则$2(\frac{1}{2}\sin\alpha - \frac{\sqrt{3}}{2}\cos\alpha) = 2\sin(\alpha - \frac{\pi}{3}) = 1$,所以$\sin(\alpha - \frac{\pi}{3}) = \frac{1}{2}$,令$\beta = \alpha - \frac{\pi}{3}$,则$\alpha = \beta + \frac{\pi}{3}$,即$\sin\beta = \frac{1}{2}$,所以$\sin(\frac{7\pi}{6} - 2\alpha) = \sin(\frac{7\pi}{6} - 2\beta - \frac{2\pi}{3}) = \sin(\frac{\pi}{2} - 2\beta) = \cos2\beta = 1 - 2\sin^{2}\beta = \frac{1}{2}$.
5. $\tan50^{\circ} - \tan20^{\circ} - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} =$________.
答案:
答案 $\frac{\sqrt{3}}{3}$
解析 $\tan50^{\circ} - \tan20^{\circ} - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \tan(50^{\circ} - 20^{\circ})(1 + \tan50^{\circ}\tan20^{\circ}) - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \tan30^{\circ}(1 + \tan50^{\circ}\tan20^{\circ}) - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \frac{\sqrt{3}}{3}$.
解析 $\tan50^{\circ} - \tan20^{\circ} - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \tan(50^{\circ} - 20^{\circ})(1 + \tan50^{\circ}\tan20^{\circ}) - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \tan30^{\circ}(1 + \tan50^{\circ}\tan20^{\circ}) - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} - \frac{\sqrt{3}}{3}\tan50^{\circ}\tan20^{\circ} = \frac{\sqrt{3}}{3}$.
例3 (1)(2024·四川绵阳模拟)已知$\sin(\frac{\pi}{6} - \alpha) = \frac{\sqrt{2}}{3}$,则$\cos(2\alpha - \frac{4\pi}{3}) =$( )
A. $-\frac{5}{9}$
B. $\frac{5}{9}$
C. $-\frac{1}{3}$
D. $\frac{1}{3}$
A. $-\frac{5}{9}$
B. $\frac{5}{9}$
C. $-\frac{1}{3}$
D. $\frac{1}{3}$
答案:
A [$\cos(2\alpha - \frac{4\pi}{3}) = \cos(-\pi + 2\alpha - \frac{\pi}{3}) = - \cos(2\alpha - \frac{\pi}{3}) = - \cos(\frac{\pi}{3} - 2\alpha) = - [1 - 2\sin^{2}(\frac{\pi}{6} - \alpha)] = - (1 - 2\times\frac{2}{9}) = - \frac{5}{9}$. 故选A.]
(2)已知$\alpha,\beta\in(\frac{3\pi}{4},\pi)$,$\sin(\alpha + \beta) = -\frac{3}{5}$,$\sin(\beta - \frac{\pi}{4}) = \frac{12}{13}$,则$\cos(\alpha + \frac{\pi}{4}) =$________.
答案:
答案 $-\frac{56}{65}$
解析 因为$\alpha,\beta\in(\frac{3\pi}{4},\pi)$,所以$\frac{3\pi}{2}<\alpha + \beta<2\pi$,$\frac{\pi}{2}<\beta - \frac{\pi}{4}<\frac{3\pi}{4}$,因为$\sin(\alpha + \beta) = - \frac{3}{5}$,$\sin(\beta - \frac{\pi}{4}) = \frac{12}{13}$,所以$\cos(\alpha + \beta) = \frac{4}{5}$,$\cos(\beta - \frac{\pi}{4}) = - \frac{5}{13}$,所以$\cos(\alpha + \frac{\pi}{4}) = \cos[\alpha + \beta - (\beta - \frac{\pi}{4})] = \cos(\alpha + \beta)\cos(\beta - \frac{\pi}{4}) + \sin(\alpha + \beta)\sin(\beta - \frac{\pi}{4}) = \frac{4}{5}\times(- \frac{5}{13}) + ( - \frac{3}{5})\times\frac{12}{13} = - \frac{56}{65}$.
解析 因为$\alpha,\beta\in(\frac{3\pi}{4},\pi)$,所以$\frac{3\pi}{2}<\alpha + \beta<2\pi$,$\frac{\pi}{2}<\beta - \frac{\pi}{4}<\frac{3\pi}{4}$,因为$\sin(\alpha + \beta) = - \frac{3}{5}$,$\sin(\beta - \frac{\pi}{4}) = \frac{12}{13}$,所以$\cos(\alpha + \beta) = \frac{4}{5}$,$\cos(\beta - \frac{\pi}{4}) = - \frac{5}{13}$,所以$\cos(\alpha + \frac{\pi}{4}) = \cos[\alpha + \beta - (\beta - \frac{\pi}{4})] = \cos(\alpha + \beta)\cos(\beta - \frac{\pi}{4}) + \sin(\alpha + \beta)\sin(\beta - \frac{\pi}{4}) = \frac{4}{5}\times(- \frac{5}{13}) + ( - \frac{3}{5})\times\frac{12}{13} = - \frac{56}{65}$.
6.(2023·山东烟台模拟)已知$\tan(\alpha + \beta) = \frac{1}{2}$,$\tan(\alpha - \beta) = \frac{1}{3}$,则$\tan(\pi - 2\alpha) =$( )
A. 1
B. -1
C. 2
D. -2
A. 1
B. -1
C. 2
D. -2
答案:
B [$\because2\alpha = (\alpha + \beta) + (\alpha - \beta)$,$\therefore\tan2\alpha = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta)\tan(\alpha - \beta)} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2}\times\frac{1}{3}} = 1$. 又$\tan(\pi - 2\alpha) = - \tan2\alpha$,$\therefore\tan(\pi - 2\alpha) = - 1$. 故选B.]
7. 已知$0 < x < \frac{\pi}{4}$,$\sin(\frac{\pi}{4} - x) = \frac{5}{13}$,则$\frac{\cos2x}{\cos(\frac{\pi}{4} + x)} =$________.
答案:
答案 $\frac{24}{13}$
解析 $\frac{\cos2x}{\cos(\frac{\pi}{4} + x)} = \frac{\cos^{2}x - \sin^{2}x}{\frac{\sqrt{2}}{2}(\cos x - \sin x)} = \sqrt{2}(\cos x + \sin x) = 2\cos(\frac{\pi}{4} - x)$. 由$0<x<\frac{\pi}{4}$得$0<\frac{\pi}{4} - x<\frac{\pi}{4}$,$\therefore\cos(\frac{\pi}{4} - x) = \sqrt{1 - \sin^{2}(\frac{\pi}{4} - x)} = \sqrt{1 - (\frac{5}{13})^{2}} = \frac{12}{13}$,所以原式$ = 2\times\frac{12}{13} = \frac{24}{13}$.
解析 $\frac{\cos2x}{\cos(\frac{\pi}{4} + x)} = \frac{\cos^{2}x - \sin^{2}x}{\frac{\sqrt{2}}{2}(\cos x - \sin x)} = \sqrt{2}(\cos x + \sin x) = 2\cos(\frac{\pi}{4} - x)$. 由$0<x<\frac{\pi}{4}$得$0<\frac{\pi}{4} - x<\frac{\pi}{4}$,$\therefore\cos(\frac{\pi}{4} - x) = \sqrt{1 - \sin^{2}(\frac{\pi}{4} - x)} = \sqrt{1 - (\frac{5}{13})^{2}} = \frac{12}{13}$,所以原式$ = 2\times\frac{12}{13} = \frac{24}{13}$.
例1 $2\sqrt{1 + \sin4}+\sqrt{2 + 2\cos4}=$( )
A. $2\cos2$ B. $2\sin2$
C. $4\sin2 + 2\cos2$ D. $2\sin2 + 4\cos2$
[课堂笔记] ____________________________
A. $2\cos2$ B. $2\sin2$
C. $4\sin2 + 2\cos2$ D. $2\sin2 + 4\cos2$
[课堂笔记] ____________________________
答案:
B [2$\sqrt{1 + \sin4}$ + $\sqrt{2 + 2\cos4}$ = 2$\sqrt{\sin^{2}2 + 2\sin2\cos2 + \cos^{2}2}$ + $\sqrt{2 + 2(2\cos^{2}2 - 1)}$ = 2$\sqrt{(\sin2 + \cos2)^{2}}$ + $\sqrt{4\cos^{2}2}$ = 2|$\sin2 + \cos2$| + 2|$\cos2$|.
∵$\frac{\pi}{2}$ < 2 < $\pi$,
∴$\cos2$ < 0,
∵$\sin2 + \cos2$ = $\sqrt{2}\sin(2 + \frac{\pi}{4})$, 0 < 2 + $\frac{\pi}{4}$ < $\pi$,
∴$\sin2 + \cos2$ > 0,
∴原式 = 2($\sin2 + \cos2$) - 2$\cos2$ = 2$\sin2$. 故选B.]
∵$\frac{\pi}{2}$ < 2 < $\pi$,
∴$\cos2$ < 0,
∵$\sin2 + \cos2$ = $\sqrt{2}\sin(2 + \frac{\pi}{4})$, 0 < 2 + $\frac{\pi}{4}$ < $\pi$,
∴$\sin2 + \cos2$ > 0,
∴原式 = 2($\sin2 + \cos2$) - 2$\cos2$ = 2$\sin2$. 故选B.]
查看更多完整答案,请扫码查看