2025年金版教程高考科学复习解决方案数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版教程高考科学复习解决方案数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第229页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
例1 (2024·福建泉州实验中学段考)点F是抛物线$\Gamma:y^{2}=2px(p > 0)$的焦点,O为坐标原点,过点F作垂直于x轴的直线l,与抛物线$\Gamma$交于A,B两点,$\vert AB\vert = 4$,抛物线$\Gamma$的准线与x轴交于点K。
(1)求抛物线$\Gamma$的方程;
(2)设C,D是抛物线$\Gamma$上异于A,B两点的两个不同的点,直线AC与BD交于点E,直线AD与BC交于点G,证明:E,K,G三点共线。
(1)求抛物线$\Gamma$的方程;
(2)设C,D是抛物线$\Gamma$上异于A,B两点的两个不同的点,直线AC与BD交于点E,直线AD与BC交于点G,证明:E,K,G三点共线。
答案:
解
(1)抛物线$\Gamma:y^{2}=2px(p > 0)$的焦点为$F(\frac{p}{2},0)$,过点$F$作垂直于$x$轴的直线$l$,与抛物线$\Gamma$交于$A$,$B$两点,且$|AB| = 4$,不妨设$A(\frac{p}{2},2)$,$B(\frac{p}{2}, - 2)$,则$2^{2}=2p\cdot\frac{p}{2}$,解得$p = 2$或$p = - 2$(舍去),所以抛物线$\Gamma$的方程为$y^{2}=4x$。
(2)如图,由
(1)知$A(1,2)$,$B(1, - 2)$,$K( - 1,0)$,设$C(\frac{y_{1}^{2}}{4},y_{1})$,$D(\frac{y_{2}^{2}}{4},y_{2})$($y_{1}\neq\pm2,y_{2}\neq\pm2$),则直线$AC$的方程为$y - 2=\frac{y_{1}-2}{\frac{y_{1}^{2}}{4}-1}(x - 1)$,$y - 2=\frac{4}{y_{1}+2}(x - 1)$,直线$BD$的方程为$y + 2=\frac{y_{2}+2}{\frac{y_{2}^{2}}{4}-1}(x - 1)$,$y + 2=\frac{4}{y_{2}-2}(x - 1)$。
联立$\begin{cases}y - 2=\frac{4}{y_{1}+2}(x - 1)\\y + 2=\frac{4}{y_{2}-2}(x - 1)\end{cases}$得$\begin{cases}x=\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}\\y=\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}\end{cases}$,则$E(\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4},\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4})$,所以$k_{EK}=\frac{\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}}{\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}-(-1)}=\frac{\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}}{\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}+1}=\frac{2(y_{1}+y_{2})}{y_{1}y_{2}+4}$,则直线$BC$的方程为$y + 2=\frac{y_{1}+2}{\frac{y_{1}^{2}}{4}-1}(x - 1)$,$y + 2=\frac{4}{y_{1}-2}(x - 1)$,直线$AD$的方程为$y - 2=\frac{y_{2}-2}{\frac{y_{2}^{2}}{4}-1}(x - 1)$,$y - 2=\frac{4}{y_{2}+2}(x - 1)$。
联立$\begin{cases}y + 2=\frac{4}{y_{1}-2}(x - 1)\\y - 2=\frac{4}{y_{2}+2}(x - 1)\end{cases}$得$\begin{cases}x=\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}\\y=\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}\end{cases}$,则$G(\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4},\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4})$,所以$k_{GK}=\frac{\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}}{\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}-(-1)}=\frac{\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}}{\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}+1}=\frac{2(y_{1}+y_{2})}{y_{1}y_{2}+4}$,则$k_{EK}=k_{GK}$,所以$E$,$K$,$G$三点共线。
解
(1)抛物线$\Gamma:y^{2}=2px(p > 0)$的焦点为$F(\frac{p}{2},0)$,过点$F$作垂直于$x$轴的直线$l$,与抛物线$\Gamma$交于$A$,$B$两点,且$|AB| = 4$,不妨设$A(\frac{p}{2},2)$,$B(\frac{p}{2}, - 2)$,则$2^{2}=2p\cdot\frac{p}{2}$,解得$p = 2$或$p = - 2$(舍去),所以抛物线$\Gamma$的方程为$y^{2}=4x$。
(2)如图,由
(1)知$A(1,2)$,$B(1, - 2)$,$K( - 1,0)$,设$C(\frac{y_{1}^{2}}{4},y_{1})$,$D(\frac{y_{2}^{2}}{4},y_{2})$($y_{1}\neq\pm2,y_{2}\neq\pm2$),则直线$AC$的方程为$y - 2=\frac{y_{1}-2}{\frac{y_{1}^{2}}{4}-1}(x - 1)$,$y - 2=\frac{4}{y_{1}+2}(x - 1)$,直线$BD$的方程为$y + 2=\frac{y_{2}+2}{\frac{y_{2}^{2}}{4}-1}(x - 1)$,$y + 2=\frac{4}{y_{2}-2}(x - 1)$。
联立$\begin{cases}y - 2=\frac{4}{y_{1}+2}(x - 1)\\y + 2=\frac{4}{y_{2}-2}(x - 1)\end{cases}$得$\begin{cases}x=\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}\\y=\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}\end{cases}$,则$E(\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4},\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4})$,所以$k_{EK}=\frac{\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}}{\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}-(-1)}=\frac{\frac{2(y_{1}+y_{2})}{y_{1}-y_{2}+4}}{\frac{y_{1}y_{2}-y_{1}+y_{2}}{y_{1}-y_{2}+4}+1}=\frac{2(y_{1}+y_{2})}{y_{1}y_{2}+4}$,则直线$BC$的方程为$y + 2=\frac{y_{1}+2}{\frac{y_{1}^{2}}{4}-1}(x - 1)$,$y + 2=\frac{4}{y_{1}-2}(x - 1)$,直线$AD$的方程为$y - 2=\frac{y_{2}-2}{\frac{y_{2}^{2}}{4}-1}(x - 1)$,$y - 2=\frac{4}{y_{2}+2}(x - 1)$。
联立$\begin{cases}y + 2=\frac{4}{y_{1}-2}(x - 1)\\y - 2=\frac{4}{y_{2}+2}(x - 1)\end{cases}$得$\begin{cases}x=\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}\\y=\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}\end{cases}$,则$G(\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4},\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4})$,所以$k_{GK}=\frac{\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}}{\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}-(-1)}=\frac{\frac{2(y_{1}+y_{2})}{y_{2}-y_{1}+4}}{\frac{y_{1}y_{2}-y_{2}+y_{1}}{y_{2}-y_{1}+4}+1}=\frac{2(y_{1}+y_{2})}{y_{1}y_{2}+4}$,则$k_{EK}=k_{GK}$,所以$E$,$K$,$G$三点共线。
1.(2024·广东花都调研)已知动点M在圆$x^{2}+y^{2}=3$上,过点M作x轴的垂线,垂足为N,点P满足$\overrightarrow{MN}=\sqrt{3}\overrightarrow{PN}$,点P的轨迹为C。
(1)求C的方程;
(2)已知点$F(-\sqrt{2},0)$,设A,B是曲线C上的两点,直线AB与曲线$x^{2}+y^{2}=1(x < 0)$相切。 证明:A,B,F三点共线的充要条件是$\vert AB\vert=\sqrt{3}$。
(1)求C的方程;
(2)已知点$F(-\sqrt{2},0)$,设A,B是曲线C上的两点,直线AB与曲线$x^{2}+y^{2}=1(x < 0)$相切。 证明:A,B,F三点共线的充要条件是$\vert AB\vert=\sqrt{3}$。
答案:
解
(1)设$P(x,y)$,$M(x_{0},y_{0})$,则$N(x_{0},0)$,$\overrightarrow{MN}=(0, - y_{0})$,$\overrightarrow{PN}=(x_{0}-x, - y)$,由$\overrightarrow{MN}=\sqrt{3}\overrightarrow{PN}$,可得$\begin{cases}x_{0}=x\\y_{0}=\sqrt{3}y\end{cases}$,因为点$M(x_{0},y_{0})$在圆$x^{2}+y^{2}=3$上,所以$x^{2}+(\sqrt{3}y)^{2}=3$,即$\frac{x^{2}}{3}+y^{2}=1$,所以$C$的方程为$\frac{x^{2}}{3}+y^{2}=1$。
(2)当直线$AB$的斜率不存在时,直线$AB:x = - 1$,不符合题意;当直线$AB$的斜率存在时,设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,必要性:若$A$,$B$,$F$三点共线,可设直线$AB:y = k(x+\sqrt{2})$,即$kx - y+\sqrt{2}k = 0$,由直线$AB$与曲线$x^{2}+y^{2}=1(x < 0)$相切,可得$\frac{|\sqrt{2}k|}{\sqrt{k^{2}+1}} = 1$,解得$k=\pm1$,联立$\begin{cases}y=\pm(x+\sqrt{2})\\\frac{x^{2}}{3}+y^{2}=1\end{cases}$可得$4x^{2}+6\sqrt{2}x + 3 = 0$,所以$x_{1}+x_{2}=-\frac{3\sqrt{2}}{2}$,$x_{1}x_{2}=\frac{3}{4}$,所以$|AB|=\sqrt{1 + 1}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}=\sqrt{3}$,必要性成立。充分性:设直线$AB:y = kx + b$,即$kx - y + b = 0$,由直线$AB$与曲线$x^{2}+y^{2}=1(x < 0)$相切,可得$\frac{|b|}{\sqrt{k^{2}+1}} = 1$,所以$b^{2}=k^{2}+1$,联立$\begin{cases}y = kx + b\\\frac{x^{2}}{3}+y^{2}=1\end{cases}$可得$(1 + 3k^{2})x^{2}+6kbx + 3b^{2}-3 = 0$,所以$x_{1}+x_{2}=-\frac{6kb}{1 + 3k^{2}}$,$x_{1}x_{2}=\frac{3b^{2}-3}{1 + 3k^{2}}$,所以$|AB|=\sqrt{1 + k^{2}}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}=\sqrt{1 + k^{2}}\cdot\sqrt{(-\frac{6kb}{1 + 3k^{2}})^{2}-4\cdot\frac{3b^{2}-3}{1 + 3k^{2}}}=\sqrt{1 + k^{2}}\cdot\frac{\sqrt{24k^{2}}}{1 + 3k^{2}}=\sqrt{3}$,化简得$3(k^{2}-1)^{2}=0$,所以$k=\pm1$,所以$\begin{cases}k = 1\\b=\sqrt{2}\end{cases}$或$\begin{cases}k = - 1\\b=-\sqrt{2}\end{cases}$,所以直线$AB:y = x+\sqrt{2}$或$y = - x-\sqrt{2}$,所以直线$AB$过点$F(-\sqrt{2},0)$,$A$,$B$,$F$三点共线,充分性成立。所以$A$,$B$,$F$三点共线的充要条件是$|AB|=\sqrt{3}$。
(1)设$P(x,y)$,$M(x_{0},y_{0})$,则$N(x_{0},0)$,$\overrightarrow{MN}=(0, - y_{0})$,$\overrightarrow{PN}=(x_{0}-x, - y)$,由$\overrightarrow{MN}=\sqrt{3}\overrightarrow{PN}$,可得$\begin{cases}x_{0}=x\\y_{0}=\sqrt{3}y\end{cases}$,因为点$M(x_{0},y_{0})$在圆$x^{2}+y^{2}=3$上,所以$x^{2}+(\sqrt{3}y)^{2}=3$,即$\frac{x^{2}}{3}+y^{2}=1$,所以$C$的方程为$\frac{x^{2}}{3}+y^{2}=1$。
(2)当直线$AB$的斜率不存在时,直线$AB:x = - 1$,不符合题意;当直线$AB$的斜率存在时,设$A(x_{1},y_{1})$,$B(x_{2},y_{2})$,必要性:若$A$,$B$,$F$三点共线,可设直线$AB:y = k(x+\sqrt{2})$,即$kx - y+\sqrt{2}k = 0$,由直线$AB$与曲线$x^{2}+y^{2}=1(x < 0)$相切,可得$\frac{|\sqrt{2}k|}{\sqrt{k^{2}+1}} = 1$,解得$k=\pm1$,联立$\begin{cases}y=\pm(x+\sqrt{2})\\\frac{x^{2}}{3}+y^{2}=1\end{cases}$可得$4x^{2}+6\sqrt{2}x + 3 = 0$,所以$x_{1}+x_{2}=-\frac{3\sqrt{2}}{2}$,$x_{1}x_{2}=\frac{3}{4}$,所以$|AB|=\sqrt{1 + 1}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}=\sqrt{3}$,必要性成立。充分性:设直线$AB:y = kx + b$,即$kx - y + b = 0$,由直线$AB$与曲线$x^{2}+y^{2}=1(x < 0)$相切,可得$\frac{|b|}{\sqrt{k^{2}+1}} = 1$,所以$b^{2}=k^{2}+1$,联立$\begin{cases}y = kx + b\\\frac{x^{2}}{3}+y^{2}=1\end{cases}$可得$(1 + 3k^{2})x^{2}+6kbx + 3b^{2}-3 = 0$,所以$x_{1}+x_{2}=-\frac{6kb}{1 + 3k^{2}}$,$x_{1}x_{2}=\frac{3b^{2}-3}{1 + 3k^{2}}$,所以$|AB|=\sqrt{1 + k^{2}}\cdot\sqrt{(x_{1}+x_{2})^{2}-4x_{1}x_{2}}=\sqrt{1 + k^{2}}\cdot\sqrt{(-\frac{6kb}{1 + 3k^{2}})^{2}-4\cdot\frac{3b^{2}-3}{1 + 3k^{2}}}=\sqrt{1 + k^{2}}\cdot\frac{\sqrt{24k^{2}}}{1 + 3k^{2}}=\sqrt{3}$,化简得$3(k^{2}-1)^{2}=0$,所以$k=\pm1$,所以$\begin{cases}k = 1\\b=\sqrt{2}\end{cases}$或$\begin{cases}k = - 1\\b=-\sqrt{2}\end{cases}$,所以直线$AB:y = x+\sqrt{2}$或$y = - x-\sqrt{2}$,所以直线$AB$过点$F(-\sqrt{2},0)$,$A$,$B$,$F$三点共线,充分性成立。所以$A$,$B$,$F$三点共线的充要条件是$|AB|=\sqrt{3}$。
查看更多完整答案,请扫码查看