2025年育才金典九年级数学全一册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年育才金典九年级数学全一册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年育才金典九年级数学全一册北师大版》

第104页
1. 已知抛物线$y = -3x^2$上两点$A(x_1,y_1)$和$B(x_2,y_2)$,且A,B两点均在y轴的右侧,若$y_1 < y_2 < 0$,则$x_1,x_2$的大小关系为 (
A


A.$x_1 > x_2$
B.$x_1 < x_2$
C.$x_1 = x_2$
D.不能确定
答案: A
2. 下列函数中,经过原点,且当$x > 0$时y随x增大而减小的有 (
B

①$y = \frac{1}{x}$;②$y = -2x^2$;③$y = -\frac{1}{3}x^2$;
④$y = 3x$;⑤$y = x^2$;⑥$y = -x$.

A.2个
B.3个
C.4个
D.5个
答案: B
3. 函数$y = \frac{3}{7}x^2$的图象开口向
,顶点是
(0,0)
,对称轴是
y轴
. 当$x = $
0
时,y有最
值,这个值是
0
.
答案: 上; (0,0); y轴; 0; 小; 0
4. 已知函数$y = (n + 1)x^{n^2 + n}$是二次函数,其图象开口向下,则$n = $
-2
,顶点是
(0,0)
. 当$x$
≤0
时,y随x的增大而增大;当$x$
≥0
时,y随x的增大而减小.
答案: -2; (0,0); ≤0; ≥0
5. 若点$A(-2,a)$在抛物线$y = -5x^2$上,则点A关于y轴对称点的坐标是
(2,-20)
.
答案: (2,-20)
6. 如图:①$y = ax^2$;②$y = bx^2$;③$y = cx^2$;④$y = dx^2$. 比较a,b,c,d的大小,用“>”连接:
$a > b > d > c$
.
答案: $a > b > d > c$
7. 如图,直线过点$A(4,0)$和点$B(0,4)$,它与二次函数$y = ax^2$的图象在第一象限内相交于点P. 若$\triangle AOP$的面积为$\frac{9}{2}$,求此二次函数的表达式.

解:$S_{\triangle AOP} = \frac{1}{2}OA \cdot y_P = \frac{9}{2}$
$\therefore y_P = \frac{9}{4}$
$\therefore P(\frac{7}{4},\frac{9}{4})$
$\therefore y = \frac{36}{49}x^2$
答案: 解:$S_{\triangle AOP} = \frac{1}{2}OA \cdot y_P = \frac{9}{2}$
$\therefore y_P = \frac{9}{4}$
$\therefore P(\frac{7}{4},\frac{9}{4})$
$\therefore y = \frac{36}{49}x^2$
视野拓展 如图,直线AB过x轴上一点$A(2,0)$,且与抛物线$y = ax^2$相交于B,C两点,点B的坐标为(1,1).
(1)求直线AB的解析式及抛物线的解析式;
(2)求点C的坐标;
(3)求$S_{\triangle OBC}$;
(4)若抛物线上有一点D(在第一象限内),使得$S_{\triangle AOD} = S_{\triangle COB}$,求点D的坐标.

解:(1)设直线表达式为$y = kx + b$.
∵$A(2,0)$,$B(1,1)$都在$y = kx + b$的图象上,
$\therefore \begin{cases}2k + b = 0 \\ k + b = 1\end{cases}$,解得$\begin{cases}k = -1 \\ b = 2\end{cases}$,
∴直线AB的表达式为$y = -x + 2$;
设抛物线解析式为$y = ax^2$,
∵点$B(1,1)$在$y = ax^2$的图象上,∴$a = 1$,
∴抛物线的解析式为$y = x^2$;
(2)联立方程组$\begin{cases}y = -x + 2 \\ y = x^2\end{cases}$,解得$\begin{cases}x = -2 \\ y = 4\end{cases}$或$\begin{cases}x = 1 \\ y = 1\end{cases}$,
∴点C坐标为$(-2,4)$;
(3)$S_{\triangle COB} = S_{\triangle AOC} - S_{\triangle OAB} = \frac{1}{2} × 2 × 4 - \frac{1}{2} × 2 × 1 = 3$;
(4)设点D的坐标为$(m,m^2)(m > 0)$,
∵点$A(2,0)$,∴$OA = 2$,
∵$S_{\triangle AOD} = S_{\triangle BOC} = \frac{1}{2}OA \cdot y_D = \frac{1}{2} × 2m^2 = 3$,
解得$m = \sqrt{3}$或$m = -\sqrt{3}$(舍去),
∴点D的坐标为$(\sqrt{3},3)$
答案: 解:
(1)设直线表达式为$y = kx + b$.
∵$A(2,0)$,$B(1,1)$都在$y = kx + b$的图象上,
$\therefore \begin{cases}2k + b = 0 \\ k + b = 1\end{cases}$,解得$\begin{cases}k = -1 \\ b = 2\end{cases}$,
∴直线AB的表达式为$y = -x + 2$;
设抛物线解析式为$y = ax^2$,
∵点$B(1,1)$在$y = ax^2$的图象上,
∴$a = 1$,
∴抛物线的解析式为$y = x^2$;
(2)联立方程组$\begin{cases}y = -x + 2 \\ y = x^2\end{cases}$,解得$\begin{cases}x = -2 \\ y = 4\end{cases}$或$\begin{cases}x = 1 \\ y = 1\end{cases}$,
∴点C坐标为$(-2,4)$;
(3)$S_{\triangle COB} = S_{\triangle AOC} - S_{\triangle OAB} = \frac{1}{2} × 2 × 4 - \frac{1}{2} × 2 × 1 = 3$;
(4)设点D的坐标为$(m,m^2)(m > 0)$,
∵点$A(2,0)$,
∴$OA = 2$,
∵$S_{\triangle AOD} = S_{\triangle BOC} = \frac{1}{2}OA \cdot y_D = \frac{1}{2} × 2m^2 = 3$,
解得$m = \sqrt{3}$或$m = -\sqrt{3}$(舍去),
∴点D的坐标为$(\sqrt{3},3)$

查看更多完整答案,请扫码查看

关闭