第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
例1
把一张长方形纸片按如图1-2-1①、图1-2-1②的方式从右向左连续对折两次后得到图1-2-1③,再在图1-2-1③中挖去一个三角形小孔后得到图1-2-1④,则重新展开后得到的图形是图1-2-2中的( )。


答 C
把一张长方形纸片按如图1-2-1①、图1-2-1②的方式从右向左连续对折两次后得到图1-2-1③,再在图1-2-1③中挖去一个三角形小孔后得到图1-2-1④,则重新展开后得到的图形是图1-2-2中的( )。
答 C
答案:
【解析】:本题主要考查对折的性质以及空间想象能力。
首先,我们分析长方形纸片的对折过程。
初始状态为长方形纸片,标记为图①。
第一次对折后,纸片变为两层,标记为图②,此时纸片的长变为原来的一半,宽不变。
第二次对折后,纸片变为四层,标记为图③,此时纸片的长再次变为对折前的一半,宽仍然不变。
接下来,我们考虑在图③中挖去一个三角形小孔的影响。
由于纸片是四层,所以挖去的三角形小孔会在重新展开后出现在四个不同的位置。
我们需要根据对折的轴线来判断这些位置。
观察图③,我们可以看到对折的轴线(虚线)将纸片分为左右两部分。
由于是对折,所以左右两部分在展开后是对称的。
因此,挖去的三角形小孔在展开后也会以对称的方式出现在四个位置。
现在,我们对比选项A、B、C、D。
选项A和B中的图形不是关于对折轴线对称的,因此可以排除。
选项D中的图形虽然对称,但三角形小孔的位置与图③中挖去的位置不符,因此也可以排除。
选项C中的图形既关于对折轴线对称,且三角形小孔的位置也与图③中挖去的位置相符。
【答案】:C
首先,我们分析长方形纸片的对折过程。
初始状态为长方形纸片,标记为图①。
第一次对折后,纸片变为两层,标记为图②,此时纸片的长变为原来的一半,宽不变。
第二次对折后,纸片变为四层,标记为图③,此时纸片的长再次变为对折前的一半,宽仍然不变。
接下来,我们考虑在图③中挖去一个三角形小孔的影响。
由于纸片是四层,所以挖去的三角形小孔会在重新展开后出现在四个不同的位置。
我们需要根据对折的轴线来判断这些位置。
观察图③,我们可以看到对折的轴线(虚线)将纸片分为左右两部分。
由于是对折,所以左右两部分在展开后是对称的。
因此,挖去的三角形小孔在展开后也会以对称的方式出现在四个位置。
现在,我们对比选项A、B、C、D。
选项A和B中的图形不是关于对折轴线对称的,因此可以排除。
选项D中的图形虽然对称,但三角形小孔的位置与图③中挖去的位置不符,因此也可以排除。
选项C中的图形既关于对折轴线对称,且三角形小孔的位置也与图③中挖去的位置相符。
【答案】:C
例2 2022·衢州中考
如图1-2-3是某品牌运动服的S号、M号、L号、XL号的销售情况统计图,则厂家应生产最多的型号为( )。

A.S号
B.M号
C.L号
D.XL号
解 根据小学学过的统计知识可知,M号所占百分比最大,即它的销量最大,故厂家应生产最多的型号为M号。
答 B
如图1-2-3是某品牌运动服的S号、M号、L号、XL号的销售情况统计图,则厂家应生产最多的型号为( )。
A.S号
B.M号
C.L号
D.XL号
解 根据小学学过的统计知识可知,M号所占百分比最大,即它的销量最大,故厂家应生产最多的型号为M号。
答 B
答案:
【解析】:本题主要考查了从扇形统计图中获取信息的能力。
在这个扇形统计图中,各型号所占的百分比分别为:S号$26\%$,M号$32\%$,L号$24\%$,XL号$18\%$。
通过比较这些百分比的大小,可以确定哪个型号的销量最大。
因为$32\%\gt 26\%\gt 24\%\gt 18\%$,
所以M号所占的百分比最大,即M号的销量最大。
因此,厂家应生产最多的型号为M号。
【答案】:B
在这个扇形统计图中,各型号所占的百分比分别为:S号$26\%$,M号$32\%$,L号$24\%$,XL号$18\%$。
通过比较这些百分比的大小,可以确定哪个型号的销量最大。
因为$32\%\gt 26\%\gt 24\%\gt 18\%$,
所以M号所占的百分比最大,即M号的销量最大。
因此,厂家应生产最多的型号为M号。
【答案】:B
例1
图1-2-5是用12根相同的木棒搭成的图形,由3个正方形组成,你能移动其中的3根木棒,使它变成由7个正方形组成的图形吗?
解 观察图形,理清木棒间的关系,试着动手操作一下。
技巧点拨
动手操作是发现问题本质、解决问题的方法之一。可以先通过想象寻找解决问题的方法,再动手操作验证自己的想象。
图解

如图1-2-8,画"×"的3根为要移动的木棒。
答 能移动3根木棒使它变成由7个正方形组成的图形。移动的方法不唯一,如图1-2-6。如把图1-2-5中上面正方形的最上面一根木棒移动到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间,如图1-2-6。

图1-2-5是用12根相同的木棒搭成的图形,由3个正方形组成,你能移动其中的3根木棒,使它变成由7个正方形组成的图形吗?
解 观察图形,理清木棒间的关系,试着动手操作一下。
技巧点拨
动手操作是发现问题本质、解决问题的方法之一。可以先通过想象寻找解决问题的方法,再动手操作验证自己的想象。
图解
如图1-2-8,画"×"的3根为要移动的木棒。
答 能移动3根木棒使它变成由7个正方形组成的图形。移动的方法不唯一,如图1-2-6。如把图1-2-5中上面正方形的最上面一根木棒移动到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间,如图1-2-6。
答案:
【解析】:
题目要求通过移动3根木棒,将由3个正方形组成的图形变为由7个正方形组成的图形。动手操作是解决问题的方法之一,可以通过想象寻找解决方法,再动手操作验证。
观察图形,理清木棒间的关系,试着动手操作一下。
原图形由3个正方形组成,共用了12根木棒。要变成7个正方形,需要考虑如何合理移动木棒。
试着移动图1-2-5中上面正方形的最上面一根木棒到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间。
【答案】:
能移动3根木棒使它变成由7个正方形组成的图形。移动的方法不唯一,如把图1-2-5中上面正方形的最上面一根木棒移动到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间,如图1-2-6。
题目要求通过移动3根木棒,将由3个正方形组成的图形变为由7个正方形组成的图形。动手操作是解决问题的方法之一,可以通过想象寻找解决方法,再动手操作验证。
观察图形,理清木棒间的关系,试着动手操作一下。
原图形由3个正方形组成,共用了12根木棒。要变成7个正方形,需要考虑如何合理移动木棒。
试着移动图1-2-5中上面正方形的最上面一根木棒到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间。
【答案】:
能移动3根木棒使它变成由7个正方形组成的图形。移动的方法不唯一,如把图1-2-5中上面正方形的最上面一根木棒移动到下面两个正方形之间,把上面正方形的左右两根木棒移动到左边的正方形的中间,如图1-2-6。
查看更多完整答案,请扫码查看