2025年教材完全解读七年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年教材完全解读七年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年教材完全解读七年级数学上册苏科版》

第155页
例3-2
(1)如图6-2-3①,$\angle AOB= \angle COD= 90^{\circ }$,$\angle 1与\angle 2$相等吗?为什么?
(2)如图6-2-3②,直线MN与PQ相交于点E,$\angle 1与\angle 2$相等吗?为什么?

答 (1)相等。
因为$\angle COD= 90^{\circ }$,所以$\angle 2+\angle BOC= 90^{\circ }$。
因为$\angle AOB= 90^{\circ }$,所以$\angle 1+\angle BOC= 90^{\circ }$,所以$\angle 1= \angle 2$。
(2)相等。
因为点M,E,N在同一条直线上,
所以$\angle MEN= 180^{\circ }$,即$\angle 2+\angle PEN= 180^{\circ }$。
因为点P,E,Q在同一条直线上,
所以$\angle PEQ= 180^{\circ }$,即$\angle 1+\angle PEN= 180^{\circ }$。
所以$\angle 1= \angle 2$。
答案: 【解析】:本题主要考查了角的计算以及余角和对顶角的性质。
(1)对于图①,已知$\angle AOB = \angle COD = 90^{\circ}$,根据余角的性质,如果两个角的和为$90^{\circ}$,那么这两个角互为余角,所以$\angle 1$和$\angle 2$都是$\angle BOC$的余角,因此$\angle 1 = \angle 2$。
(2)对于图②,已知直线$MN$与$PQ$相交于点$E$,根据对顶角的性质,对顶角相等,所以$\angle 1$和$\angle 2$是对顶角,因此$\angle 1 = \angle 2$。
【答案】:
(1)相等。
因为$\angle COD= 90^{\circ }$,所以$\angle 2+\angle BOC= 90^{\circ }$。
因为$\angle AOB= 90^{\circ }$,所以$\angle 1+\angle BOC= 90^{\circ }$。
所以$\angle 1= \angle 2$。
(2)相等。
因为点$M,E,N$在同一条直线上,所以$\angle MEN= 180^{\circ }$,即$\angle 2+\angle PEN= 180^{\circ }$。
因为点$P,E,Q$在同一条直线上,所以$\angle PEQ= 180^{\circ }$,即$\angle 1+\angle PEN= 180^{\circ }$。
所以$\angle 1= \angle 2$。

查看更多完整答案,请扫码查看

关闭