第17页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
4. 解下列方程:
(1)$2x^2 + 2x - 1 = 0$.
(2)$3x^2 - 2x - 8 = 0$.
方法指导:若方程没有快捷的解法,可选择用公式法求解.
(1)$2x^2 + 2x - 1 = 0$.
(2)$3x^2 - 2x - 8 = 0$.
方法指导:若方程没有快捷的解法,可选择用公式法求解.
答案:
4.解:
(1)$\because a = 2,b = 2,c = - 1$,$\therefore \Delta = b^2 - 4ac = 2^2 - 4 × 2 × (-1) = 12 > 0$ $\therefore x = \frac{-2 \pm \sqrt{12}}{2 × 2} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$ $\therefore x_1 = \frac{-1 + \sqrt{3}}{2},x_2 = \frac{-1 - \sqrt{3}}{2}$。
(2)$\because a = 3,b = - 2,c = - 8$,$\therefore \Delta = b^2 - 4ac = (-2)^2 - 4 × 3 × (-8) = 100 > 0$ $\therefore x = \frac{2 \pm \sqrt{100}}{2 × 3} = \frac{2 \pm 10}{6}$ $\therefore x_1 = 2,x_2 = - \frac{4}{3}$。
(1)$\because a = 2,b = 2,c = - 1$,$\therefore \Delta = b^2 - 4ac = 2^2 - 4 × 2 × (-1) = 12 > 0$ $\therefore x = \frac{-2 \pm \sqrt{12}}{2 × 2} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$ $\therefore x_1 = \frac{-1 + \sqrt{3}}{2},x_2 = \frac{-1 - \sqrt{3}}{2}$。
(2)$\because a = 3,b = - 2,c = - 8$,$\therefore \Delta = b^2 - 4ac = (-2)^2 - 4 × 3 × (-8) = 100 > 0$ $\therefore x = \frac{2 \pm \sqrt{100}}{2 × 3} = \frac{2 \pm 10}{6}$ $\therefore x_1 = 2,x_2 = - \frac{4}{3}$。
5. 解下列方程:
(1)$x^2 - 2x = 3$.
(2)$9x^2 - (x - 1)^2 = 0$.
(3)$3x^2 - \sqrt{2}x - \frac{1}{4} = 0$.
(4)$3x^2 - 6x = 4(x - 2)$.
(1)$x^2 - 2x = 3$.
(2)$9x^2 - (x - 1)^2 = 0$.
(3)$3x^2 - \sqrt{2}x - \frac{1}{4} = 0$.
(4)$3x^2 - 6x = 4(x - 2)$.
答案:
5.解:
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4$ $\therefore x - 1 = \pm 2$ $\therefore x_1 = 3,x_2 = - 1$。【解法二:十字相乘法】$x^2 - 2x = 3$,$x^2 - 2x - 3 = 0$,$(x - 3)(x + 1) = 0$,$\therefore x - 3 = 0$或$x + 1 = 0$ $\therefore x_1 = 3,x_2 = - 1$。
(2)$(3x + x - 1)(3x - x + 1) = 0$,$(4x - 1)(2x + 1) = 0$ $\therefore 4x - 1 = 0$或$2x + 1 = 0$ $\therefore x_1 = \frac{1}{4},x_2 = - \frac{1}{2}$。
(3)$\because a = 3,b = - \sqrt{2},c = - \frac{1}{4}$,$\therefore \Delta = (- \sqrt{2})^2 - 4 × 3 × (- \frac{1}{4}) = 5 > 0$ $\therefore x = \frac{-(-\sqrt{2}) \pm \sqrt{5}}{2 × 3} = \frac{\sqrt{2} \pm \sqrt{5}}{6}$ $\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$。
(4)整理,得$3x^2 - 10x + 8 = 0$,$(x - 2)(3x - 4) = 0$ $\therefore x - 2 = 0$或$3x - 4 = 0$,$\therefore x_1 = 2,x_2 = \frac{4}{3}$。
(1)【解法一:配方法】$x^2 - 2x + 1 = 3 + 1$,即$(x - 1)^2 = 4$ $\therefore x - 1 = \pm 2$ $\therefore x_1 = 3,x_2 = - 1$。【解法二:十字相乘法】$x^2 - 2x = 3$,$x^2 - 2x - 3 = 0$,$(x - 3)(x + 1) = 0$,$\therefore x - 3 = 0$或$x + 1 = 0$ $\therefore x_1 = 3,x_2 = - 1$。
(2)$(3x + x - 1)(3x - x + 1) = 0$,$(4x - 1)(2x + 1) = 0$ $\therefore 4x - 1 = 0$或$2x + 1 = 0$ $\therefore x_1 = \frac{1}{4},x_2 = - \frac{1}{2}$。
(3)$\because a = 3,b = - \sqrt{2},c = - \frac{1}{4}$,$\therefore \Delta = (- \sqrt{2})^2 - 4 × 3 × (- \frac{1}{4}) = 5 > 0$ $\therefore x = \frac{-(-\sqrt{2}) \pm \sqrt{5}}{2 × 3} = \frac{\sqrt{2} \pm \sqrt{5}}{6}$ $\therefore x_1 = \frac{\sqrt{2} + \sqrt{5}}{6},x_2 = \frac{\sqrt{2} - \sqrt{5}}{6}$。
(4)整理,得$3x^2 - 10x + 8 = 0$,$(x - 2)(3x - 4) = 0$ $\therefore x - 2 = 0$或$3x - 4 = 0$,$\therefore x_1 = 2,x_2 = \frac{4}{3}$。
6. 新考向 阅读理解(2024·桂林灌阳县期中节选)解方程$x^4 - 5x^2 + 4 = 0$,这是一个一元四次方程,根据该方程的特点,它的解法通常如下:
设$x^2 = y$,则$x^4 = y^2$,于是原方程可变为
当$y_1 = 1$时,$x^2 = 1$,$x = \pm 1$;
当$y_2 = 4$时,$x^2 = 4$,$x = \pm 2$.
∴原方程有四个根:$x_1 = 1$,$x_2 = -1$,$x_3 = 2$,$x_4 = -2$.
(1)①中填写的方程是
(2)参考以上方法解方程:$(x^2 + x)^2 - 4(x^2 + x) - 12 = 0$.
设$x^2 = y$,则$x^4 = y^2$,于是原方程可变为
$y^2 - 5y + 4 = 0$
①,解得$y_1 = 1$,$y_2 = 4$.当$y_1 = 1$时,$x^2 = 1$,$x = \pm 1$;
当$y_2 = 4$时,$x^2 = 4$,$x = \pm 2$.
∴原方程有四个根:$x_1 = 1$,$x_2 = -1$,$x_3 = 2$,$x_4 = -2$.
(1)①中填写的方程是
$y^2 - 5y + 4 = 0$
,在由原方程得到方程①的过程中,利用换元
法达到降次的目的,体现了数学的转化思想.(2)参考以上方法解方程:$(x^2 + x)^2 - 4(x^2 + x) - 12 = 0$.
答案:
6.解:
(1)$y^2 - 5y + 4 = 0$ 换元
(2)设$x^2 + x = y$,则原方程可化为$y^2 - 4y - 12 = 0$。解得$y_1 = 6,y_2 = - 2$。当$y = 6$时,$x^2 + x = 6$,即$x^2 + x - 6 = 0$,解得$x_1 = - 3,x_2 = 2$;当$y = - 2$时,$x^2 + x = - 2$,即$x^2 + x + 2 = 0$。$\because \Delta = 1^2 - 4 × 1 × 2 = - 7 < 0$,$\therefore$此方程无实数根。综上所述,原方程的解为$x_1 = - 3,x_2 = 2$。
(1)$y^2 - 5y + 4 = 0$ 换元
(2)设$x^2 + x = y$,则原方程可化为$y^2 - 4y - 12 = 0$。解得$y_1 = 6,y_2 = - 2$。当$y = 6$时,$x^2 + x = 6$,即$x^2 + x - 6 = 0$,解得$x_1 = - 3,x_2 = 2$;当$y = - 2$时,$x^2 + x = - 2$,即$x^2 + x + 2 = 0$。$\because \Delta = 1^2 - 4 × 1 × 2 = - 7 < 0$,$\therefore$此方程无实数根。综上所述,原方程的解为$x_1 = - 3,x_2 = 2$。
查看更多完整答案,请扫码查看