2025年名校课堂九年级数学全一册人教版广西专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名校课堂九年级数学全一册人教版广西专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名校课堂九年级数学全一册人教版广西专版》

第124页
1. 在盒子里放有分别写有整式 $2$,$\pi$,$x$,$x + 1$ 的四张卡片,从中随机抽取两张,把卡片上的整式分别作为分子和分母,则能组成分式的概率是(
A
)

A.$\frac{1}{2}$
B.$\frac{1}{3}$
C.$\frac{1}{4}$
D.$\frac{1}{6}$
答案: 1.A
2. (2024·河北)甲、乙、丙三张卡片正面分别写有 $a + b$,$2a + b$,$a - b$,除正面的代数式不同外,其余均相同.
(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当 $a = 1$,$b = - 2$ 时,求取出的卡片上代数式的值为负数的概率.
(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张. 请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
答案: 2.解:
(1)当a=1,b=−2时,a+b=−1,2a+b=0,a−b=3.从三张卡片中随机抽取一张,共有3种等可能的结果,其中取出的卡片上代数式的值为负数的结果有1种,
∴取出的卡片上代数式的值为负数的概率为$\frac{1}{3}$.
(2)3a+2b 3a+2b 4a+2b 3a 3a 2a−2b 共有9种等可能的结果,其中和为单项式的结果有4种,
∴和为单项式的概率为$\frac{4}{9}$.
3. 从 $1$,$2$,$3$,$4$ 四个数中随机选取两个不同的数,分别记为 $a$,$c$,则关于 $x$ 的一元二次方程 $ax^{2}+4x + c = 0$ 有实数解的概率为(
C
)

A.$\frac{1}{4}$
B.$\frac{1}{3}$
C.$\frac{1}{2}$
D.$\frac{2}{3}$
答案: 3.C
4. 从 $- 2$,$- 1$,$1$,$2$ 这四个数中任取一个作为 $a$ 的值,再从余下的三个数中任取一个数作为 $b$ 的值,则不等式组 $\begin{cases}x > a\\x < b\end{cases}$ 有整数解的概率是
$\frac{1}{3}$
.
答案: 4.$\frac{1}{3}$
5. 从 $- 2$,$- 1$,$1$ 中任取两个不同的数作为一次函数 $y = kx + b$ 中 $k$,$b$ 的值,则函数 $y = kx + b$ 的图象交 $x$ 轴于正半轴的概率是
$\frac{2}{3}$
.
答案: 5.$\frac{2}{3}$
6. 在 $- 4$,$- 2$,$1$,$2$ 四个数中随机取两个数分别作为函数 $y = ax^{2}+bx + 1$ 中 $a$,$b$ 的值,则该二次函数图象恰好经过第一、二、四象限的概率为
$\frac{1}{6}$
.
答案: 6.$\frac{1}{6}$
7. (2024·东营)如图,四边形 $ABCD$ 是平行四边形,从“① $AC = BD$;② $AC\perp BD$;③ $AB = BC$”这三个条件中任意选取两个,能使 $□ ABCD$ 是正方形的概率为(
A
)

A.$\frac{2}{3}$
B.$\frac{1}{2}$
C.$\frac{1}{3}$
D.$\frac{5}{6}$
答案: 7.A
8. 如图,$\triangle ABC$ 是一个小型花园,阴影部分为一个圆形水池,且与 $\triangle ABC$ 的三边相切,已知 $AB = 10\ m$,$AC = 8\ m$,$BC = 6\ m$. 若从天空飘落下一片树叶恰好落入花园里,则落入水池的概率为
$\frac{1}{2}$
. ($\pi$ 取 $3$)
答案: 8.$\frac{1}{2}$
9. 新考向 跨学科 (2024·绵阳)如图,电路上有 $S_{1}$,$S_{2}$,$S_{3}$,$S_{4}$ 四个断开的开关和一个正常的小灯泡 $L$,将这些开关随机闭合至少两个,能让灯泡发光的概率为(
D
)

A.$\frac{3}{5}$
B.$\frac{7}{11}$
C.$\frac{4}{5}$
D.$\frac{9}{11}$
答案: 9.D

查看更多完整答案,请扫码查看

关闭