2025年金版新学案高三总复习数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第123页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
(2025·江西南昌模拟)在△ABC 中,角 A,B,C 所对的边分别记为 a,b,c,且 tan A = $\frac{\cos B - \sin C}{\cos C + \sin B}$.
(1)若 B = $\frac{\pi}{6}$,求 C 的大小;
(2)若 a = 2,求 b + c 的取值范围.
(1)若 B = $\frac{\pi}{6}$,求 C 的大小;
(2)若 a = 2,求 b + c 的取值范围.
答案:
(1)因为$\tan A = \frac{\cos B - \sin C}{\cos C + \sin B}$,所以$\frac{\sin A}{\cos A} = \frac{\cos B - \sin C}{\cos C + \sin B}$,即$\sin A\cos C + \sin A\sin B = \cos A\cos B - \cos A\sin C$,即$\sin A\cos C + \cos A\sin C = \cos A\cos B - \sin A\sin B$,所以$\sin(A + C) = \cos(A + B)$,即$\sin B = \cos(A + B)$,而$A,B \in (0,\pi)$,所以$B + A + B = \frac{\pi}{2}$或$B - (A + B) = \frac{\pi}{2}$,所以$A + 2B = \frac{\pi}{2}$或$A = -\frac{\pi}{2}$(舍去),又因为$B = \frac{\pi}{6}$,所以$A = \frac{\pi}{6}$,所以$C = \frac{2\pi}{3}$。
(2)由
(1)得$A + 2B = \frac{\pi}{2}$,因为$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,所以$b = \frac{a\sin B}{\sin A} = \frac{2\sin B}{\sin A} = \frac{2\sin B}{\cos2B}$,$c = \frac{a\sin C}{\sin A} = \frac{2\sin C}{\sin A} = \frac{2\cos B}{\cos2B}$,则$b + c = \frac{2(\sin B + \cos B)}{\cos 2B} = \frac{2(\sin B + \cos B)}{\cos^{2}B - \sin^{2}B} = \frac{2}{\cos B - \sin B} = \frac{\sqrt{2}}{\cos(B + \frac{\pi}{4})}$,由$0 < B < \frac{\pi}{2}$,$0 < \frac{\pi}{2} - 2B < \pi$,得$0 < B < \frac{\pi}{4}$,所以$\frac{\pi}{4} < B + \frac{\pi}{4} < \frac{\pi}{2}$,所以$0 < \cos(B + \frac{\pi}{4}) < \frac{\sqrt{2}}{2}$,所以$b + c \in (2, +\infty)$。
(2)由
(1)得$A + 2B = \frac{\pi}{2}$,因为$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,所以$b = \frac{a\sin B}{\sin A} = \frac{2\sin B}{\sin A} = \frac{2\sin B}{\cos2B}$,$c = \frac{a\sin C}{\sin A} = \frac{2\sin C}{\sin A} = \frac{2\cos B}{\cos2B}$,则$b + c = \frac{2(\sin B + \cos B)}{\cos 2B} = \frac{2(\sin B + \cos B)}{\cos^{2}B - \sin^{2}B} = \frac{2}{\cos B - \sin B} = \frac{\sqrt{2}}{\cos(B + \frac{\pi}{4})}$,由$0 < B < \frac{\pi}{2}$,$0 < \frac{\pi}{2} - 2B < \pi$,得$0 < B < \frac{\pi}{4}$,所以$\frac{\pi}{4} < B + \frac{\pi}{4} < \frac{\pi}{2}$,所以$0 < \cos(B + \frac{\pi}{4}) < \frac{\sqrt{2}}{2}$,所以$b + c \in (2, +\infty)$。
(1)求sin A;
答案:
因为$A + B = 3C$,所以$\pi - C = 3C$,即$C = \frac{\pi}{4}$.
又$2\sin(A - C) = \sin B = \sin(A + C)$,
所以$2\sin A\cos C - 2\cos A\sin C = \sin A\cos C + \cos A\sin C$,
所以$\sin A\cos C = 3\cos A\sin C$,所以$\sin A = 3\cos A$,
即$\tan A = 3$,所以$0 < A < \frac{\pi}{2}$,所以$\sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$.
又$2\sin(A - C) = \sin B = \sin(A + C)$,
所以$2\sin A\cos C - 2\cos A\sin C = \sin A\cos C + \cos A\sin C$,
所以$\sin A\cos C = 3\cos A\sin C$,所以$\sin A = 3\cos A$,
即$\tan A = 3$,所以$0 < A < \frac{\pi}{2}$,所以$\sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$.
(2)设AB=5,求AB边上的高.
答案:
由
(1)知,$\cos A = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$,由$\sin B = \sin(A + C) = \sin A\cos C + \cos A\sin C = \frac{\sqrt{2}}{2}(\frac{3\sqrt{10}}{10} + \frac{\sqrt{10}}{10}) = \frac{2\sqrt{5}}{5}$.
由正弦定理,$\frac{AB}{\sin C} = \frac{AC}{\sin B}$,可得$AC = \frac{5 × \frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}} = 2\sqrt{10}$.
所以$h = AC · \sin A = 2\sqrt{10} × \frac{3\sqrt{10}}{10} = 6$.
(1)知,$\cos A = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$,由$\sin B = \sin(A + C) = \sin A\cos C + \cos A\sin C = \frac{\sqrt{2}}{2}(\frac{3\sqrt{10}}{10} + \frac{\sqrt{10}}{10}) = \frac{2\sqrt{5}}{5}$.
由正弦定理,$\frac{AB}{\sin C} = \frac{AC}{\sin B}$,可得$AC = \frac{5 × \frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}} = 2\sqrt{10}$.
所以$h = AC · \sin A = 2\sqrt{10} × \frac{3\sqrt{10}}{10} = 6$.
(1)求角B;
答案:
因为$2b\cos(A - \frac{\pi}{3}) = a + c$,
由正弦定理可得$2\sin B(\frac{1}{2}\cos A + \frac{\sqrt{3}}{2}\sin A) = \sin A + \sin C$,
即$\sin B\cos A + \sqrt{3}\sin A\sin B = \sin A + \sin(A + B)$,
即$\sin B\cos A + \sqrt{3}\sin A\sin B = \sin A + \sin A\cos B + \cos A\sin B$,
所以$\sqrt{3}\sin B\sin A = \sin A + \sin A\cos B$,
在三角形中,$\sin A > 0$,所以$\sqrt{3}\sin B - \cos B = 1$,
即$\sin(B - \frac{\pi}{6}) = \frac{1}{2}$,因为$B \in (0,\pi)$,则$B - \frac{\pi}{6} \in (-\frac{\pi}{6},\frac{5\pi}{6})$,可得$B - \frac{\pi}{6} = \frac{\pi}{6}$,则$B = \frac{\pi}{3}$.
由正弦定理可得$2\sin B(\frac{1}{2}\cos A + \frac{\sqrt{3}}{2}\sin A) = \sin A + \sin C$,
即$\sin B\cos A + \sqrt{3}\sin A\sin B = \sin A + \sin(A + B)$,
即$\sin B\cos A + \sqrt{3}\sin A\sin B = \sin A + \sin A\cos B + \cos A\sin B$,
所以$\sqrt{3}\sin B\sin A = \sin A + \sin A\cos B$,
在三角形中,$\sin A > 0$,所以$\sqrt{3}\sin B - \cos B = 1$,
即$\sin(B - \frac{\pi}{6}) = \frac{1}{2}$,因为$B \in (0,\pi)$,则$B - \frac{\pi}{6} \in (-\frac{\pi}{6},\frac{5\pi}{6})$,可得$B - \frac{\pi}{6} = \frac{\pi}{6}$,则$B = \frac{\pi}{3}$.
(2)若AC边上的高h=$\frac{\sqrt{3}}{4}$b,求cos A cos C.
答案:
因为$AC$边上的高$h = \frac{\sqrt{3}}{4}b$,
所以$S_{\triangle ABC} = \frac{1}{2}b · h = \frac{1}{2}b · \frac{\sqrt{3}}{4}b = \frac{\sqrt{3}}{8}b^{2}$①.
又$S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2}ac × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}ac$②.
由①②可得$b^{2} = 2ac$,由正弦定理可得$\sin^{2}B = 2\sin A\sin C$,
结合
(1)中$B = \frac{\pi}{3}$可得$\sin A\sin C = \frac{3}{8}$,
因为$\cos B = - \cos(A + C) = - \cos A\cos C + \sin A\sin C = \frac{1}{2}$,
所以$\cos A\cos C = \sin A\sin C - \frac{1}{2} = \frac{3}{8} - \frac{1}{2} = - \frac{1}{8}$.
所以$S_{\triangle ABC} = \frac{1}{2}b · h = \frac{1}{2}b · \frac{\sqrt{3}}{4}b = \frac{\sqrt{3}}{8}b^{2}$①.
又$S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2}ac × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4}ac$②.
由①②可得$b^{2} = 2ac$,由正弦定理可得$\sin^{2}B = 2\sin A\sin C$,
结合
(1)中$B = \frac{\pi}{3}$可得$\sin A\sin C = \frac{3}{8}$,
因为$\cos B = - \cos(A + C) = - \cos A\cos C + \sin A\sin C = \frac{1}{2}$,
所以$\cos A\cos C = \sin A\sin C - \frac{1}{2} = \frac{3}{8} - \frac{1}{2} = - \frac{1}{8}$.
(1)若∠ADC=$\frac{\pi}{3}$,求tan B;
答案:
在$\triangle ABC$中,因为$D$为$BC$的中点,$\angle ADC = \frac{\pi}{3}$,$AD = 1$,则$S_{\triangle ADC} = \frac{1}{2}AD · DC\sin\angle ADC = \frac{1}{2} × 1 × \frac{1}{2}a × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}a = \frac{1}{2}S_{\triangle ABC} = \frac{\sqrt{3}}{2}$,解得$a = 4$.
在$\triangle ABD$中,$\angle ADB = \frac{2\pi}{3}$,由余弦定理得$c^{2} = BD^{2} + AD^{2} - 2BD · AD\cos\angle ADB$,
即$c^{2} = 4 + 1 - 2 × 2 × 1 × (-\frac{1}{2}) = 7$,解得$c = \sqrt{7}$,
则$\cos B = \frac{7 + 4 - 1}{2\sqrt{7} × 2} = \frac{5\sqrt{7}}{14}$,$\sin B = \sqrt{1 - \cos^{2}B} = \sqrt{1 - (\frac{5\sqrt{7}}{14})^{2}} = \frac{\sqrt{21}}{14}$,所以$\tan B = \frac{\sin B}{\cos B} = \frac{\sqrt{3}}{5}$.
法二:在$\triangle ABC$中,因为$D$为$BC$的中点,$\angle ADC = \frac{\pi}{3}$,$AD = 1$,
则$S_{\triangle ADC} = \frac{1}{2}AD · DC\sin\angle ADC = \frac{1}{2} × 1 × \frac{1}{2}a × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}a$,解得$a = 4$.
在$\triangle ACD$中,由余弦定理得$b^{2} = CD^{2} + AD^{2} - 2CD · AD\cos\angle ADC$,
即$b^{2} = 4 + 1 - 2 × 2 × 1 × \frac{1}{2} = 3$,解得$b = \sqrt{3}$,有$AC^{2} + AD^{2} = 4 = CD^{2}$,
则$\angle CAD = \frac{\pi}{2}$,$C = \frac{\pi}{6}$,如图,过$A$作$AE \perp BC$于$E$,

于是$CE = AC\cos C = \frac{3}{2}$,$AE = AC\sin C = \frac{\sqrt{3}}{2}$,$BE = \frac{5}{2}$,所以$\tan B = \frac{AE}{BE} = \frac{\sqrt{3}}{5}$.
在$\triangle ABC$中,因为$D$为$BC$的中点,$\angle ADC = \frac{\pi}{3}$,$AD = 1$,则$S_{\triangle ADC} = \frac{1}{2}AD · DC\sin\angle ADC = \frac{1}{2} × 1 × \frac{1}{2}a × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}a = \frac{1}{2}S_{\triangle ABC} = \frac{\sqrt{3}}{2}$,解得$a = 4$.
在$\triangle ABD$中,$\angle ADB = \frac{2\pi}{3}$,由余弦定理得$c^{2} = BD^{2} + AD^{2} - 2BD · AD\cos\angle ADB$,
即$c^{2} = 4 + 1 - 2 × 2 × 1 × (-\frac{1}{2}) = 7$,解得$c = \sqrt{7}$,
则$\cos B = \frac{7 + 4 - 1}{2\sqrt{7} × 2} = \frac{5\sqrt{7}}{14}$,$\sin B = \sqrt{1 - \cos^{2}B} = \sqrt{1 - (\frac{5\sqrt{7}}{14})^{2}} = \frac{\sqrt{21}}{14}$,所以$\tan B = \frac{\sin B}{\cos B} = \frac{\sqrt{3}}{5}$.
法二:在$\triangle ABC$中,因为$D$为$BC$的中点,$\angle ADC = \frac{\pi}{3}$,$AD = 1$,
则$S_{\triangle ADC} = \frac{1}{2}AD · DC\sin\angle ADC = \frac{1}{2} × 1 × \frac{1}{2}a × \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}a$,解得$a = 4$.
在$\triangle ACD$中,由余弦定理得$b^{2} = CD^{2} + AD^{2} - 2CD · AD\cos\angle ADC$,
即$b^{2} = 4 + 1 - 2 × 2 × 1 × \frac{1}{2} = 3$,解得$b = \sqrt{3}$,有$AC^{2} + AD^{2} = 4 = CD^{2}$,
则$\angle CAD = \frac{\pi}{2}$,$C = \frac{\pi}{6}$,如图,过$A$作$AE \perp BC$于$E$,
于是$CE = AC\cos C = \frac{3}{2}$,$AE = AC\sin C = \frac{\sqrt{3}}{2}$,$BE = \frac{5}{2}$,所以$\tan B = \frac{AE}{BE} = \frac{\sqrt{3}}{5}$.
(2)若b²+c²=8,求b,c.
答案:
在$\triangle ABD$与$\triangle ACD$中,由余弦定理得$\begin{cases}c^{2} = \frac{1}{4}a^{2} + 1 - 2 × \frac{1}{2}a × 1 × \cos(\pi - \angle ADC) \\b^{2} = \frac{1}{4}a^{2} + 1 - 2 × \frac{1}{2}a × 1 × \cos\angle ADC\end{cases}$
整理得$\frac{1}{2}a^{2} + 2 = b^{2} + c^{2}$,而$b^{2} + c^{2} = 8$,则$a = 2\sqrt{3}$.
又$S_{\triangle ADC} = \frac{1}{2} × \sqrt{3} × 1 × \sin\angle ADC = \frac{\sqrt{3}}{2}$,解得$\sin\angle ADC = 1$,而$0 < \angle ADC < \pi$,于是$\angle ADC = \frac{\pi}{2}$,所以$b = c = \sqrt{AD^{2} + CD^{2}} = 2$.
法二:在$\triangle ABC$中,因为$D$为$BC$的中点,则$2\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$,
又$\overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AC}$,
于是$4\overrightarrow{AD}^{2} + \overrightarrow{CB}^{2} = (\overrightarrow{AB} + \overrightarrow{AC})^{2} + (\overrightarrow{AB} - \overrightarrow{AC})^{2} = 2(b^{2} + c^{2}) = 16$,
即$4 + a^{2} = 16$,解得$a = 2\sqrt{3}$.
又$S_{\triangle ADC} = \frac{1}{2} × \sqrt{3} × 1 × \sin\angle ADC = \frac{\sqrt{3}}{2}$,解得$\sin\angle ADC = 1$,而$0 < \angle ADC < \pi$,于是$\angle ADC = \frac{\pi}{2}$,所以$b = c = \sqrt{AD^{2} + CD^{2}} = 2$.
整理得$\frac{1}{2}a^{2} + 2 = b^{2} + c^{2}$,而$b^{2} + c^{2} = 8$,则$a = 2\sqrt{3}$.
又$S_{\triangle ADC} = \frac{1}{2} × \sqrt{3} × 1 × \sin\angle ADC = \frac{\sqrt{3}}{2}$,解得$\sin\angle ADC = 1$,而$0 < \angle ADC < \pi$,于是$\angle ADC = \frac{\pi}{2}$,所以$b = c = \sqrt{AD^{2} + CD^{2}} = 2$.
法二:在$\triangle ABC$中,因为$D$为$BC$的中点,则$2\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$,
又$\overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AC}$,
于是$4\overrightarrow{AD}^{2} + \overrightarrow{CB}^{2} = (\overrightarrow{AB} + \overrightarrow{AC})^{2} + (\overrightarrow{AB} - \overrightarrow{AC})^{2} = 2(b^{2} + c^{2}) = 16$,
即$4 + a^{2} = 16$,解得$a = 2\sqrt{3}$.
又$S_{\triangle ADC} = \frac{1}{2} × \sqrt{3} × 1 × \sin\angle ADC = \frac{\sqrt{3}}{2}$,解得$\sin\angle ADC = 1$,而$0 < \angle ADC < \pi$,于是$\angle ADC = \frac{\pi}{2}$,所以$b = c = \sqrt{AD^{2} + CD^{2}} = 2$.
查看更多完整答案,请扫码查看