2025年金版新学案高三总复习数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第95页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
4. (多选题)(2025·安徽马鞍山模拟)若角$A,B,C$是$\triangle ABC$的三个内角,则下列结论中一定成立的是(
A.$\cos(A + B)=-\cos C$
B.$\tan(B + C)=\tan A$
C.$\cos\frac{A + C}{2}=\sin B$
D.$\sin\frac{B + C}{2}=\cos\frac{A}{2}$
AD
)A.$\cos(A + B)=-\cos C$
B.$\tan(B + C)=\tan A$
C.$\cos\frac{A + C}{2}=\sin B$
D.$\sin\frac{B + C}{2}=\cos\frac{A}{2}$
答案:
4.AD 对于$A,\cos(A + B)=\cos(\pi - C)=-\cos C,$故A正确;对于B,$\tan(B + C)=\tan(\pi - A)=-\tan A,$故B错误;对于$C,\cos\frac{A + C}{2}=\cos\frac{\pi - B}{2}=\cos(\frac{\pi}{2}-\frac{B}{2})=\sin\frac{B}{2},$故C错误;对于D,$\sin\frac{B + C}{2}=\sin\frac{\pi - A}{2}=\sin(\frac{\pi}{2}-\frac{A}{2})=\cos\frac{A}{2},$故D正确. 故选AD.
典例1 (1)(2025·山东泰安模拟)已知$\sin(\frac{3\pi}{2}+\alpha)=\frac{\sqrt{3}}{2}$且$\frac{\pi}{2}\lt\alpha\lt\pi$,则$\tan\alpha=$(
A.$-\sqrt{3}$
B.$-\frac{\sqrt{3}}{3}$
C.$\frac{\sqrt{3}}{3}$
D.3
B
)A.$-\sqrt{3}$
B.$-\frac{\sqrt{3}}{3}$
C.$\frac{\sqrt{3}}{3}$
D.3
答案:
典例1
(1)B 由诱导公式得$\sin(\frac{3\pi}{2}+\alpha)=\sin(\pi+\frac{\pi}{2}+\alpha)=-\sin(\frac{\pi}{2}+\alpha)=-\cos\alpha=\frac{\sqrt{3}}{2},$所以$\cos\alpha=-\frac{\sqrt{3}}{2},$又因为$\alpha\in(\frac{\pi}{2},\pi),$所以$\sin\alpha=\frac{1}{2},$所以$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-\frac{\sqrt{3}}{3}. $故选B.
(1)B 由诱导公式得$\sin(\frac{3\pi}{2}+\alpha)=\sin(\pi+\frac{\pi}{2}+\alpha)=-\sin(\frac{\pi}{2}+\alpha)=-\cos\alpha=\frac{\sqrt{3}}{2},$所以$\cos\alpha=-\frac{\sqrt{3}}{2},$又因为$\alpha\in(\frac{\pi}{2},\pi),$所以$\sin\alpha=\frac{1}{2},$所以$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-\frac{\sqrt{3}}{3}. $故选B.
(2)(2023·全国乙卷)若$\theta\in(0,\frac{\pi}{2}),\tan\theta=\frac{1}{2}$,则$\sin\theta-\cos\theta=$
角度2 $\sin\alpha\pm\cos\alpha,\sin\alpha\cos\alpha$之间的关系
$-\frac{\sqrt{5}}{5}$
。角度2 $\sin\alpha\pm\cos\alpha,\sin\alpha\cos\alpha$之间的关系
答案:
$(2)-\frac{\sqrt{5}}{5} $因为$\theta\in(0,\frac{\pi}{2}),$则$\sin\theta>0,\cos\theta>0,$又因为$\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{1}{2}$则$\cos\theta = 2\sin\theta,$且$\cos^{2}\theta+\sin^{2}\theta = 4\sin^{2}\theta+\sin^{2}\theta=5\sin^{2}\theta = 1,$解得$\sin\theta=\frac{\sqrt{5}}{5}$或$\sin\theta=-\frac{\sqrt{5}}{5}($舍去),所以$\sin\theta-\cos\theta=\sin\theta - 2\sin\theta=-\sin\theta=-\frac{\sqrt{5}}{5}.$
典例2 已知$\sin\alpha-\cos\alpha=\frac{1}{5},\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则$\frac{\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}=$(
A.$-\frac{12}{5}$
B.$\frac{12}{5}$
C.$-\frac{12}{35}$
D.$\frac{12}{35}$
D
)A.$-\frac{12}{5}$
B.$\frac{12}{5}$
C.$-\frac{12}{35}$
D.$\frac{12}{35}$
答案:
典例2 D 由题意可得,$(\sin\alpha-\cos\alpha)^{2}=1 - 2\sin\alpha\cos\alpha=\frac{1}{25},$整理得$\sin\alpha\cos\alpha=\frac{12}{25}>0,$且$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2}),$可得$\alpha\in(0,\frac{\pi}{2}),$即$\sin\alpha>0,\cos\alpha>0,$可得$\sin\alpha+\cos\alpha>0,$因为$(\sin\alpha+\cos\alpha)^{2}=1 + 2\sin\alpha\cos\alpha=\frac{49}{25},$可得$\sin\alpha+\cos\alpha=\frac{7}{5},$所以$\frac{\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}=\frac{\frac{12}{25}}{\frac{7}{5}}=\frac{12}{35}. $故选D.
典例3 若$\tan\theta = 2$,则$\frac{(\sin\theta+\cos\theta)^{2}(\cos\theta-\sin\theta)}{\sin\theta}=$(
A.$-\frac{2}{5}$
B.$-\frac{9}{10}$
C.$\frac{2}{5}$
D.$\frac{9}{10}$
B
)A.$-\frac{2}{5}$
B.$-\frac{9}{10}$
C.$\frac{2}{5}$
D.$\frac{9}{10}$
答案:
典例$3 B \frac{(\sin\theta+\cos\theta)^{2}(\cos\theta-\sin\theta)}{\sin\theta}=\frac{\sin\theta+\cos\theta}{\sin\theta}·\frac{\cos^{2}\theta-\sin^{2}\theta}{\cos^{2}\theta+\sin^{2}\theta}=\frac{\tan\theta + 1}{1+\tan^{2}\theta}·\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta}=\frac{9}{10}. $故选B.
(1)已知$\alpha$是第三象限角,$\tan\alpha=\frac{5}{12}$,则$\cos\alpha$的值是(
A. $\frac{5}{13}$
B. $-\frac{5}{13}$
C. $\frac{12}{13}$
D. $-\frac{12}{13}$
(2)(多选题)(2025·辽宁葫芦岛期末)设$\alpha\in(0,\pi)$,已知$\sin\alpha,\cos\alpha$是方程$3x^{2}-x - m = 0$的两根,则下列等式正确的是(
A. $m = -\frac{4}{3}$
B. $\sin\alpha-\cos\alpha=\frac{\sqrt{17}}{3}$
C. $\tan\alpha=\frac{7}{13}$
D. $\cos^{2}\alpha-\sin^{2}\alpha=-\frac{\sqrt{17}}{9}$
(3)(2025·陕西安康模拟)若$\tan(2025\pi-\alpha)=\frac{2}{3}$,则$\frac{\sin\alpha}{2\cos\alpha}-\frac{\cos^{2}\alpha}{\cos2\alpha}=$
D
)A. $\frac{5}{13}$
B. $-\frac{5}{13}$
C. $\frac{12}{13}$
D. $-\frac{12}{13}$
(2)(多选题)(2025·辽宁葫芦岛期末)设$\alpha\in(0,\pi)$,已知$\sin\alpha,\cos\alpha$是方程$3x^{2}-x - m = 0$的两根,则下列等式正确的是(
BD
)A. $m = -\frac{4}{3}$
B. $\sin\alpha-\cos\alpha=\frac{\sqrt{17}}{3}$
C. $\tan\alpha=\frac{7}{13}$
D. $\cos^{2}\alpha-\sin^{2}\alpha=-\frac{\sqrt{17}}{9}$
(3)(2025·陕西安康模拟)若$\tan(2025\pi-\alpha)=\frac{2}{3}$,则$\frac{\sin\alpha}{2\cos\alpha}-\frac{\cos^{2}\alpha}{\cos2\alpha}=$
$-\frac{32}{15}$
。
答案:
对点练1.
(1)D
(1)因为$\tan\alpha=\frac{5}{12},$所以$\frac{\sin\alpha}{\cos\alpha}=\frac{5}{12}\cos\alpha,$又因为$\sin^{2}\alpha+\cos^{2}\alpha = 1,$所以$(\frac{5}{12}\cos\alpha)^{2}+\cos^{2}\alpha = 1,$解得$\cos\alpha=\pm\frac{12}{13},$因为$\alpha$是第三象限角,所以$\cos\alpha=-\frac{12}{13}. $故选$D. (2)BD \sin\alpha,\cos\alpha$是方程$3x^{2}-x - m = 0$的两根,则有$\begin{cases}\sin\alpha+\cos\alpha=\frac{1}{3}\\\sin\alpha·\cos\alpha=-\frac{m}{3}\end{cases}$由$(\sin\alpha+\cos\alpha)^{2}=\sin^{2}\alpha+2\sin\alpha·\cos\alpha+\cos^{2}\alpha,$得$\frac{1}{9}=1-\frac{2m}{3},$解得$m=\frac{4}{3},$故A错误;$\alpha\in(0,\pi),$有$\sin\alpha>0,$由$\sin\alpha·\cos\alpha=-\frac{m}{3}=-\frac{4}{9}$<0,有\cos\alpha<0,(\sin\alpha-\cos\alpha)^{2}=\sin^{2}\alpha-2\sin\alpha·\cos\alpha+\cos^{2}\alpha=1+\frac{8}{9}=\frac{17}{9},由\sin\alpha-\cos\alpha>0,所以$\sin\alpha-\cos\alpha=\frac{\sqrt{17}}{3},$故B正确;由$\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}=\frac{1}{3}$得$\frac{\sin\alpha}{\cos\alpha}=\frac{1+\frac{\sqrt{17}}{3}}{1-\frac{\sqrt{17}}{3}}=\frac{9+\sqrt{17}}{8},$故C错误;$\cos^{2}\alpha-\sin^{2}\alpha=(\cos\alpha+\sin\alpha)(\cos\alpha-\sin\alpha)=\frac{1}{3}×(-\frac{\sqrt{17}}{3})=-\frac{\sqrt{17}}{9},$故D正确. 故选$BD. (3)-\frac{32}{15} $因为$\tan(2025\pi-\alpha)=\frac{2}{3},$所以$\tan\alpha=-\frac{2}{3},$所以$\frac{\sin\alpha}{2\cos\alpha}-\frac{\cos^{2}\alpha}{\cos2\alpha}=\frac{\tan\alpha}{2}·\frac{1}{1-\tan^{2}\alpha}=\frac{-\frac{2}{3}}{1 - \frac{4}{9}}=-\frac{32}{15}.$
(1)D
(1)因为$\tan\alpha=\frac{5}{12},$所以$\frac{\sin\alpha}{\cos\alpha}=\frac{5}{12}\cos\alpha,$又因为$\sin^{2}\alpha+\cos^{2}\alpha = 1,$所以$(\frac{5}{12}\cos\alpha)^{2}+\cos^{2}\alpha = 1,$解得$\cos\alpha=\pm\frac{12}{13},$因为$\alpha$是第三象限角,所以$\cos\alpha=-\frac{12}{13}. $故选$D. (2)BD \sin\alpha,\cos\alpha$是方程$3x^{2}-x - m = 0$的两根,则有$\begin{cases}\sin\alpha+\cos\alpha=\frac{1}{3}\\\sin\alpha·\cos\alpha=-\frac{m}{3}\end{cases}$由$(\sin\alpha+\cos\alpha)^{2}=\sin^{2}\alpha+2\sin\alpha·\cos\alpha+\cos^{2}\alpha,$得$\frac{1}{9}=1-\frac{2m}{3},$解得$m=\frac{4}{3},$故A错误;$\alpha\in(0,\pi),$有$\sin\alpha>0,$由$\sin\alpha·\cos\alpha=-\frac{m}{3}=-\frac{4}{9}$<0,有\cos\alpha<0,(\sin\alpha-\cos\alpha)^{2}=\sin^{2}\alpha-2\sin\alpha·\cos\alpha+\cos^{2}\alpha=1+\frac{8}{9}=\frac{17}{9},由\sin\alpha-\cos\alpha>0,所以$\sin\alpha-\cos\alpha=\frac{\sqrt{17}}{3},$故B正确;由$\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}=\frac{1}{3}$得$\frac{\sin\alpha}{\cos\alpha}=\frac{1+\frac{\sqrt{17}}{3}}{1-\frac{\sqrt{17}}{3}}=\frac{9+\sqrt{17}}{8},$故C错误;$\cos^{2}\alpha-\sin^{2}\alpha=(\cos\alpha+\sin\alpha)(\cos\alpha-\sin\alpha)=\frac{1}{3}×(-\frac{\sqrt{17}}{3})=-\frac{\sqrt{17}}{9},$故D正确. 故选$BD. (3)-\frac{32}{15} $因为$\tan(2025\pi-\alpha)=\frac{2}{3},$所以$\tan\alpha=-\frac{2}{3},$所以$\frac{\sin\alpha}{2\cos\alpha}-\frac{\cos^{2}\alpha}{\cos2\alpha}=\frac{\tan\alpha}{2}·\frac{1}{1-\tan^{2}\alpha}=\frac{-\frac{2}{3}}{1 - \frac{4}{9}}=-\frac{32}{15}.$
已知$\alpha\in(\frac{3\pi}{2},\frac{7\pi}{4})$,且。
(1)求$\tan\alpha$的值;
(2)求$\frac{\sin(\frac{3\pi}{2}-\alpha)\cos(\pi+\alpha)\tan(-\alpha-\pi)}{\cos(2\pi-\alpha)\sin(\pi-\alpha)\tan(-\alpha)}$的值。
(1)求$\tan\alpha$的值;
(2)求$\frac{\sin(\frac{3\pi}{2}-\alpha)\cos(\pi+\alpha)\tan(-\alpha-\pi)}{\cos(2\pi-\alpha)\sin(\pi-\alpha)\tan(-\alpha)}$的值。
答案:
典例4 解:
(1)若选①,因为$\sin\alpha\cos\alpha=-\frac{2}{5}$所以$\frac{\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=-\frac{2}{5},$则$-\frac{\tan\alpha}{\tan^{2}\alpha + 1}=-\frac{2}{5},$解得:$\tan\alpha=-2$或$\tan\alpha=-\frac{1}{2},$因为$\alpha\in(\frac{3\pi}{2},\frac{7\pi}{4}),$所以$\tan\alpha=-2. $若选②,因为$\sin\alpha=-\frac{2\sqrt{5}}{5},\alpha\in(\frac{3\pi}{2},\frac{7\pi}{4}),$所以$\cos\alpha=\sqrt{1-\sin^{2}\alpha}=\frac{\sqrt{5}}{5},$所以$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-2. (2)$由
(1)可知,$\tan\alpha=-2,$$\frac{\sin(\frac{3\pi}{2}-\alpha)\cos(\pi+\alpha)\tan(-\alpha-\pi)}{\cos(2\pi-\alpha)\sin(\pi-\alpha)\tan(-\alpha)}=\frac{(-\cos\alpha)(-\cos\alpha)(-\tan\alpha)}{\cos\alpha\sin\alpha\tan\alpha}=\frac{1}{\sin\alpha\tan\alpha}=\frac{1}{2}.$
(1)若选①,因为$\sin\alpha\cos\alpha=-\frac{2}{5}$所以$\frac{\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=-\frac{2}{5},$则$-\frac{\tan\alpha}{\tan^{2}\alpha + 1}=-\frac{2}{5},$解得:$\tan\alpha=-2$或$\tan\alpha=-\frac{1}{2},$因为$\alpha\in(\frac{3\pi}{2},\frac{7\pi}{4}),$所以$\tan\alpha=-2. $若选②,因为$\sin\alpha=-\frac{2\sqrt{5}}{5},\alpha\in(\frac{3\pi}{2},\frac{7\pi}{4}),$所以$\cos\alpha=\sqrt{1-\sin^{2}\alpha}=\frac{\sqrt{5}}{5},$所以$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=-2. (2)$由
(1)可知,$\tan\alpha=-2,$$\frac{\sin(\frac{3\pi}{2}-\alpha)\cos(\pi+\alpha)\tan(-\alpha-\pi)}{\cos(2\pi-\alpha)\sin(\pi-\alpha)\tan(-\alpha)}=\frac{(-\cos\alpha)(-\cos\alpha)(-\tan\alpha)}{\cos\alpha\sin\alpha\tan\alpha}=\frac{1}{\sin\alpha\tan\alpha}=\frac{1}{2}.$
查看更多完整答案,请扫码查看