2025年金版新学案高三总复习数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第163页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
如图,圆$O$是边长为$2\sqrt{3}$的等边$\triangle ABC$的内切圆,其与$BC$边相切于点$D$,点$M$为圆上任意一点,$\overrightarrow{BM}=x\overrightarrow{BA}+y\overrightarrow{BD}(x,y \in \mathbf{R})$,则$2x + y$的最大值为(

A.$\sqrt{2}$
B.$\sqrt{3}$
C.$2$
D.$2\sqrt{2}$
...
C
)A.$\sqrt{2}$
B.$\sqrt{3}$
C.$2$
D.$2\sqrt{2}$
...
答案:
典例1 C 设圆O与AB,AC边分别相切于点E、点N,由题知$,BM = x\overrightarrow{BA} + y\overrightarrow{BD}=2x · \frac{1}{2}\overrightarrow{BA} + y\overrightarrow{BD}=2x\overrightarrow{BE} + y\overrightarrow{BD},$如图,作出定值k为1的等和线DE,DE与BO相交于点P,AC是过圆上的点最远的等和线,当M在N点所在的位置时,2x + y最大,设2x + y = k,则$k = \frac{|\overrightarrow{NB}|}{|\overrightarrow{PB}|}=2,$所以2x + y的最大值为2.故选C.
典例1 C 设圆O与AB,AC边分别相切于点E、点N,由题知$,BM = x\overrightarrow{BA} + y\overrightarrow{BD}=2x · \frac{1}{2}\overrightarrow{BA} + y\overrightarrow{BD}=2x\overrightarrow{BE} + y\overrightarrow{BD},$如图,作出定值k为1的等和线DE,DE与BO相交于点P,AC是过圆上的点最远的等和线,当M在N点所在的位置时,2x + y最大,设2x + y = k,则$k = \frac{|\overrightarrow{NB}|}{|\overrightarrow{PB}|}=2,$所以2x + y的最大值为2.故选C.
1. (一题多解)(2024·安徽六安模拟)如图,在平行四边形$ABCD$中,$AC$,$BD$相交于点$O$,$E$为线段$AO$的中点。若$\overrightarrow{BE}=\lambda\overrightarrow{BA}+\mu\overrightarrow{BD}(\lambda,\mu \in \mathbf{R})$,则$\lambda + \mu =$(


A.$1$
B.$\frac{3}{4}$
C.$\frac{2}{3}$
D.$\frac{1}{2}$
2. (一题多解)给定两个长度为$1$的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为$\frac{2\pi}{3}$,如图所示,点$C$在以$O$为圆心的$\widehat{AB}$上运动,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}(x,y \in \mathbf{R})$,则$x + y$的最大值是
B
)A.$1$
B.$\frac{3}{4}$
C.$\frac{2}{3}$
D.$\frac{1}{2}$
2. (一题多解)给定两个长度为$1$的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为$\frac{2\pi}{3}$,如图所示,点$C$在以$O$为圆心的$\widehat{AB}$上运动,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}(x,y \in \mathbf{R})$,则$x + y$的最大值是
2
。
答案:
对点练1.
(1)B
(2)2
(1)法一(常规法):因为E为线段AO的中点,所以$\overrightarrow{BE} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BO}) = \frac{1}{2}(\overrightarrow{BA} + \frac{1}{2}\overrightarrow{BD}) = \frac{1}{2}\overrightarrow{BA} + \frac{1}{4}\overrightarrow{BD}= \lambda\overrightarrow{BA} + \mu\overrightarrow{BD},$所以$\lambda = \frac{1}{2},\mu = \frac{1}{4},$则$\lambda + \mu = \frac{3}{4}.$故选B.
法二(等和线法):如图,AD是定值为1的等和线,延长BE交AD于点F,过点E作AD的平行线,设$\lambda + \mu = k,$则$k = \frac{|\overrightarrow{BE}|}{|\overrightarrow{BF}|}.$由图易知$,\frac{|\overrightarrow{BE}|}{|\overrightarrow{BF}|} = \frac{3}{4}.$故选B.
(2)法一:以O为坐标原点,OA所在直线为x轴,建立平面直角坐标系,如图①所示,则$A(1,0),B( - \frac{1}{2},\frac{\sqrt{3}}{2}),$设$\angle AOC = \alpha(\alpha \in [0,\frac{2\pi}{3})),$则$C(\cos\alpha,\sin\alpha).$由$\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB} = (x - \frac{1}{2}y,\frac{\sqrt{3}}{2}y),$
得$\begin{cases} \cos\alpha = x - \frac{1}{2}y, \\ \sin\alpha = \frac{\sqrt{3}}{2}y. \end{cases}$
所以$x = \cos\alpha + \frac{\sqrt{3}}{3}\sin\alpha,y = \frac{2\sqrt{3}}{3}\sin\alpha,$所以x + y
$= \cos\alpha + \sqrt{3}\sin\alpha = 2\sin(\alpha + \frac{\pi}{6}),$又$\alpha \in [0,\frac{2\pi}{3}],$所以当$\alpha = \frac{\pi}{3}$时,x + y取得最大值2.
法二:令x + y = k,在所有与直线AB平行的直线中,切线离圆心最远,如图②,即此时k取得最大值,结合角度,不难得到$k = \frac{|\overrightarrow{OD}|}{|\overrightarrow{OE}|}=2.$
对点练1.
(1)B
(2)2
(1)法一(常规法):因为E为线段AO的中点,所以$\overrightarrow{BE} = \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BO}) = \frac{1}{2}(\overrightarrow{BA} + \frac{1}{2}\overrightarrow{BD}) = \frac{1}{2}\overrightarrow{BA} + \frac{1}{4}\overrightarrow{BD}= \lambda\overrightarrow{BA} + \mu\overrightarrow{BD},$所以$\lambda = \frac{1}{2},\mu = \frac{1}{4},$则$\lambda + \mu = \frac{3}{4}.$故选B.
法二(等和线法):如图,AD是定值为1的等和线,延长BE交AD于点F,过点E作AD的平行线,设$\lambda + \mu = k,$则$k = \frac{|\overrightarrow{BE}|}{|\overrightarrow{BF}|}.$由图易知$,\frac{|\overrightarrow{BE}|}{|\overrightarrow{BF}|} = \frac{3}{4}.$故选B.
(2)法一:以O为坐标原点,OA所在直线为x轴,建立平面直角坐标系,如图①所示,则$A(1,0),B( - \frac{1}{2},\frac{\sqrt{3}}{2}),$设$\angle AOC = \alpha(\alpha \in [0,\frac{2\pi}{3})),$则$C(\cos\alpha,\sin\alpha).$由$\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB} = (x - \frac{1}{2}y,\frac{\sqrt{3}}{2}y),$
得$\begin{cases} \cos\alpha = x - \frac{1}{2}y, \\ \sin\alpha = \frac{\sqrt{3}}{2}y. \end{cases}$
所以$x = \cos\alpha + \frac{\sqrt{3}}{3}\sin\alpha,y = \frac{2\sqrt{3}}{3}\sin\alpha,$所以x + y
$= \cos\alpha + \sqrt{3}\sin\alpha = 2\sin(\alpha + \frac{\pi}{6}),$又$\alpha \in [0,\frac{2\pi}{3}],$所以当$\alpha = \frac{\pi}{3}$时,x + y取得最大值2.
法二:令x + y = k,在所有与直线AB平行的直线中,切线离圆心最远,如图②,即此时k取得最大值,结合角度,不难得到$k = \frac{|\overrightarrow{OD}|}{|\overrightarrow{OE}|}=2.$
1. 如图所示,在长方形$ABCD$中,$AB = 4\sqrt{5}$,$AD = 8$,$E$,$O$,$F$为线段$BD$的四等分点,则$\overrightarrow{AE} · \overrightarrow{AF}=$

27
。
答案:
典例$2 (1)27 (1)BD = \sqrt{AB^{2} + AD^{2}} = 12,$所以AO = 6,OE = 3,所以由极化恒等式知$\overrightarrow{AE} · \overrightarrow{AF} = AO^{2} - OE^{2} = 36 - 9 = 27.$
2. 如图,在$\triangle ABC$中,$D$是$BC$的中点,$E$,$F$是$AD$上的两个三等分点。$\overrightarrow{BA} · \overrightarrow{CA} = 4$,$\overrightarrow{BF} · \overrightarrow{CF} = -1$,则$\overrightarrow{BE} · \overrightarrow{CE}$的值为

...
$\frac{7}{8}$
。...
答案:
典例$2 (2)\frac{7}{8} (2)$设BD = DC = m,AE = EF = FD = n,则AD = 3n.根据向量的极化恒等式,得$\overrightarrow{AB} · \overrightarrow{AC} = AD^{2} - DB^{2} = 9n^{2} - m^{2} = 4①,\overrightarrow{FB} · \overrightarrow{FC} = FD^{2} - DB^{2} = n^{2} - m^{2} = - 1②,$联立①②,解得$n^{2} = \frac{5}{8},m^{2} = \frac{13}{8}.$因此$\overrightarrow{EB} · \overrightarrow{EC} = \overrightarrow{ED}^{2} - \overrightarrow{DB}^{2} = 4n^{2} - m^{2} = \frac{7}{8},$即$\overrightarrow{BE} · \overrightarrow{CE} = \frac{7}{8}.$
1. 等边三角形$ABC$的外接圆的半径为$2$,点$P$是该圆上的动点,则$\overrightarrow{PA} · \overrightarrow{PB} + \overrightarrow{PB} · \overrightarrow{PC}$的最大值为(
A.$4$
B.$7$
C.$8$
D.$11$
C
)A.$4$
B.$7$
C.$8$
D.$11$
答案:
典例3
(1)C
(1)因为$\triangle ABC$为等边三角形,其外接圆的半径为2,所以以三角形的外接圆圆心为原点建立平面直角坐标系,如图,则$A(-1,\sqrt{3}),B(2,0),C(-1, - \sqrt{3}),$易知$AC \perp x$轴,交x轴于M点,取BM的中点为N,连接PN,PM,PA,PB,PC.所以$\overrightarrow{PA} · \overrightarrow{PB} + \overrightarrow{PB} · \overrightarrow{PC} = \overrightarrow{PB} · (\overrightarrow{PA} + \overrightarrow{PC}) = \overrightarrow{PB} · 2\overrightarrow{PM} = 2\overrightarrow{PM} · \overrightarrow{PB}.$由极化恒等式得$,\overrightarrow{PM} · \overrightarrow{PB} = \overrightarrow{PN}^{2} - \overrightarrow{NB}^{2}.$其中|$\overrightarrow{NB}$|$ = \frac{1}{2}$|$\overrightarrow{MB}$|$ = \frac{3}{2},\frac{3}{2} \leq $|$\overrightarrow{PN}$|$ \leq \frac{5}{2},$所以$\overrightarrow{PM} · \overrightarrow{PB} = \overrightarrow{PN}^{2} - \frac{9}{4} \in [0,4],$所以$\overrightarrow{PA} · \overrightarrow{PB} + \overrightarrow{PB} · \overrightarrow{PC} \in [0,8],$即所求最大值为8.故选C.
典例3
(1)C
(1)因为$\triangle ABC$为等边三角形,其外接圆的半径为2,所以以三角形的外接圆圆心为原点建立平面直角坐标系,如图,则$A(-1,\sqrt{3}),B(2,0),C(-1, - \sqrt{3}),$易知$AC \perp x$轴,交x轴于M点,取BM的中点为N,连接PN,PM,PA,PB,PC.所以$\overrightarrow{PA} · \overrightarrow{PB} + \overrightarrow{PB} · \overrightarrow{PC} = \overrightarrow{PB} · (\overrightarrow{PA} + \overrightarrow{PC}) = \overrightarrow{PB} · 2\overrightarrow{PM} = 2\overrightarrow{PM} · \overrightarrow{PB}.$由极化恒等式得$,\overrightarrow{PM} · \overrightarrow{PB} = \overrightarrow{PN}^{2} - \overrightarrow{NB}^{2}.$其中|$\overrightarrow{NB}$|$ = \frac{1}{2}$|$\overrightarrow{MB}$|$ = \frac{3}{2},\frac{3}{2} \leq $|$\overrightarrow{PN}$|$ \leq \frac{5}{2},$所以$\overrightarrow{PM} · \overrightarrow{PB} = \overrightarrow{PN}^{2} - \frac{9}{4} \in [0,4],$所以$\overrightarrow{PA} · \overrightarrow{PB} + \overrightarrow{PB} · \overrightarrow{PC} \in [0,8],$即所求最大值为8.故选C.
2. (2024·河南郑州、开封重点中学联考)如图所示,$\triangle ABC$是边长为$8$的等边三角形,点$P$为$AC$边上的一个动点,长度为$6$的线段$EF$的中点为点$B$,则$\overrightarrow{PE} · \overrightarrow{PF}$的取值范围是

...
[39,55]
。...
答案:
典例3
(2)[39,55]
(2)因为B是EF的中点,且EF = 6,由极化恒等式得$,\overrightarrow{PE} · \overrightarrow{PF} = \overrightarrow{PB}^{2} - \overrightarrow{BF}^{2} = \overrightarrow{PB}^{2} - 9,$又知$\triangle ABC$是边长为8的等边三角形,P在AC上运动,则|$\overrightarrow{BP}$|$ \in [4\sqrt{3},8],$所以|$\overrightarrow{PB}$|$^{2} \in [48,64],$所以$\overrightarrow{PE} · \overrightarrow{PF} = \overrightarrow{PB}^{2} - 9 \in [39,55].$
(2)[39,55]
(2)因为B是EF的中点,且EF = 6,由极化恒等式得$,\overrightarrow{PE} · \overrightarrow{PF} = \overrightarrow{PB}^{2} - \overrightarrow{BF}^{2} = \overrightarrow{PB}^{2} - 9,$又知$\triangle ABC$是边长为8的等边三角形,P在AC上运动,则|$\overrightarrow{BP}$|$ \in [4\sqrt{3},8],$所以|$\overrightarrow{PB}$|$^{2} \in [48,64],$所以$\overrightarrow{PE} · \overrightarrow{PF} = \overrightarrow{PB}^{2} - 9 \in [39,55].$
查看更多完整答案,请扫码查看