2025年金版新学案高三总复习数学北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年金版新学案高三总复习数学北师大版》

第122页
(2022·新课标 I 卷)记△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知$\frac{\cos A}{1 + \sin A} = \frac{\sin 2B}{1 + \cos 2B}$.
答案: 答案略
(1)若 C = $\frac{2\pi}{3}$,求 B;
答案:
(1)因为$\frac{\cos A}{1 + \sin A} = \frac{\sin 2B}{1 + \cos 2B} = \frac{2\sin B\cos B}{2\cos^{2}B} = \frac{\sin B}{\cos B}$,即$\sin B = \cos A\cos B - \sin A\sin B = \cos(A + B) = -\cos C = \frac{1}{2}$,而$0 < B < \frac{\pi}{3}$,所以$B = \frac{\pi}{6}$。
(2)求$\frac{a^2 + b^2}{c^2}$的最小值.
答案:
(2)由
(1)知,$\sin B = -\cos C > 0$,所以$\frac{\pi}{2} < C < \pi$,$0 < B < \frac{\pi}{2}$,而$\sin B = -\cos C = \sin(C - \frac{\pi}{2})$,所以$C = \frac{\pi}{2} + B$,即有$A = \frac{\pi}{2} - 2B$,所以$B \in (0,\frac{\pi}{4})$,$C \in (\frac{\pi}{2},\frac{3\pi}{4})$。所以$\frac{a^{2} + b^{2}}{c^{2}} = \frac{\sin^{2}A + \sin^{2}B}{\sin^{2}C} = \frac{\cos^{2}2B + \sin^{2}B}{\cos^{2}B} = \frac{(2\cos^{2}B - 1)^{2} + 1 - \cos^{2}B}{\cos^{2}B} = 4\cos^{2}B + \frac{2}{\cos^{2}B} - 5 \geq 2\sqrt{8} - 5 = 4\sqrt{2} - 5$。当且仅当$\cos^{2}B = \frac{\sqrt{2}}{2}$时取等号,所以$\frac{a^{2} + b^{2}}{c^{2}}$的最小值为$4\sqrt{2} - 5$。
(2025·江苏南京模拟)在凸四边形 ABCD 中,已知 AB = AD,AB⊥AD,BC = 4,CD = 2.
答案: 答案略
(1)若 cos∠BCD = $\frac{1}{4}$,求 sin∠ABC 的值;
答案:
(1)由余弦定理可得$BD^{2} = 16 + 4 - 2 × 4 × 2 × \frac{1}{4} = 16$,$BD = 4$,$\cos\angle CBD = \frac{16 + 16 - 4}{2 × 4 × 4} = \frac{7}{8}$,$\sin\angle CBD = \sqrt{1 - \frac{49}{64}} = \frac{\sqrt{15}}{8}$,则$\sin\angle ABC = \sin(45^{\circ} + \angle CBD) = \frac{\sqrt{2}}{2}(\sin\angle CBD + \cos\angle CBD) = \frac{7\sqrt{2} + \sqrt{30}}{16}$。
(2)求四边形 ABCD 面积 S 的最大值.
答案:
(2)由余弦定理可得$BD = \sqrt{20 - 16\cos\angle BCD}$,且$AB = \frac{\sqrt{2}}{2}BD$,$S = \frac{1}{2}AB^{2} + \frac{1}{2} × 2 × 4\sin\angle BCD = \frac{1}{4}(20 - 16\cos\angle BCD) + 4\sin\angle BCD = 4\sin\angle BCD - 4\cos\angle BCD + 5 = 4\sqrt{2}\sin(\angle BCD - \frac{\pi}{4}) + 5$。当$\angle BCD - \frac{\pi}{4} = \frac{\pi}{2}$,即$\angle BCD = \frac{3\pi}{4}$时,四边形$ABCD$的面积$S$取最大值为$S = 4\sqrt{2} + 5$。
已知锐角△ABC 中,角 A,B,C 所对的边分别为 a,b,c,且$\frac{\sin(A - B)}{\cos B} = \frac{\sin(A - C)}{\cos C}$.
答案: 由已知条件 $\frac{\sin(A - B)}{\cos B} = \frac{\sin(A - C)}{\cos C}$,
根据两角差的正弦公式,将等式展开,得到:
$\frac{\sin A \cos B - \cos A \sin B}{\cos B} = \frac{\sin A \cos C - \cos A \sin C}{\cos C}$,
上述等式可简化为:
$\sin A - \cos A \tan B = \sin A - \cos A \tan C$,
进一步化简,得到:
$\cos A(\tan B - \tan C) = 0$,
由于 $\bigtriangleup ABC$ 是锐角三角形,
所以$\cos A \neq 0$,
从而得出:
$\tan B = \tan C$,
由于 $B,C$ 是锐角,
所以$B = C$,
因此,$\bigtriangleup ABC$ 是等腰三角形,
设 $B = C = \alpha$,
由三角形内角和为 $\pi$,
有$A = \pi - 2\alpha$,
由于 $\bigtriangleup ABC$ 是锐角三角形,
所以$0 < \alpha < \frac{\pi}{2},0 < \pi - 2\alpha < \frac{\pi}{2}$,
解得$\frac{\pi}{4} < \alpha < \frac{\pi}{2}$,
由正弦定理,有$\frac{b}{\sin B} = \frac{c}{\sin C}$,
由于 $B = C$,
所以$b = c$,
设 $b = c = x$,
由余弦定理,有$a^{2} = b^{2} + c^{2} - 2bc\cos A$,
代入 $b = c = x$ 和 $A = \pi - 2\alpha$,
得到$a^{2} = 2x^{2} - 2x^{2}\cos(\pi - 2\alpha) = 2x^{2}(1 + \cos 2\alpha)$,
由于 $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$,
所以$0 < \cos 2\alpha < 1$,
因此$a^{2} \in (2x^{2},4x^{2})$,
即$a \in (\sqrt{2}x,2x)$,
所以三角形的周长为$a + 2x \in (2 + \sqrt{2})x,4x)$。
(1)若 A = $\frac{\pi}{3}$,求 B;
答案:
(1)由题意知$\frac{\sin(A - B)}{\cos B} = \frac{\sin(A - C)}{\cos C}$,所以$\sin(A - B)\cos C = \sin(A - C)\cos B$,所以$\sin A\cos B\cos C - \cos A\sin B\cos C = \sin A\cos C\cos B - \cos A\sin C\cos B$,所以$\cos A\sin B\cos C = \cos A\sin C\cos B$,因为$A \in (0,\frac{\pi}{2})$,所以$\cos A \neq 0$,所以$\sin B\cos C = \sin C\cos B$,所以$\tan B = \tan C$,因为$B,C \in (0,\frac{\pi}{2})$,所以$B = C$,由$A = \frac{\pi}{3}$,所以$B = \frac{\pi}{3}$。
(2)若 a sin C = 1,求$\frac{1}{a^2} + \frac{1}{b^2}$的最大值.
答案:
(2)由
(1)知$B = C$,所以$\sin B = \sin C$,$b = c$,因为$a\sin C = 1$,所以$\frac{1}{a} = \sin C$。由正弦定理得$a\sin C = c\sin A = b\sin A = 1$,所以$\frac{1}{b} = \sin A$,因为$A = \pi - B - C = \pi - 2C$,所以$\frac{1}{b} = \sin A = \sin 2C$,所以$\frac{1}{a^{2}} + \frac{1}{b^{2}} = \sin^{2}C + \sin^{2}2C = \frac{1 - \cos 2C}{2} + (1 - \cos^{2}2C) = -\cos^{2}2C - \frac{1}{2}\cos 2C + \frac{3}{2}$,因为$\triangle ABC$为锐角三角形,且$B = C$,则有$\frac{\pi}{4} < C < \frac{\pi}{2}$,得$\frac{\pi}{2} < 2C < \pi$,所以$-1 < \cos 2C < 0$。由二次函数的性质可得,当$\cos 2C = -\frac{1}{4}$时,$\frac{1}{a^{2}} + \frac{1}{b^{2}}$取得最大值$\frac{25}{16}$。
已知△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,且满足$\frac{\sin A}{\sin B + \sin C} = \frac{c - b}{b}$.
(1)若 C = $\frac{\pi}{2}$,求 B;
(2)求$\frac{a + c}{b}$的取值范围.
答案: (1)由$\frac{\sin A}{\sin B + \sin C} = \frac{c - b}{b}$,及正弦定理可得,$\frac{a}{b + c} = \frac{c - b}{b}$,即$c^{2} = b^{2} + ab$,因为$C = \frac{\pi}{2}$,所以$c^{2} = a^{2} + b^{2}$,所以$b^{2} + ab = a^{2} + b^{2}$,解得$a = b$,即$A = B$,又$C = \frac{\pi}{2}$,所以$B = \frac{\pi}{4}$。
(2)由
(1)知,$c^{2} = b^{2} + ab$,所以$a = \frac{c^{2} - b^{2}}{b}$,$c > b$,由三角形三边关系可得$\begin{cases}a + b > c\\b + c > a\end{cases}$,代入化简可得$b < c < 2b$,所以$\frac{a + c}{b} = \frac{c^{2} - b^{2}}{b^{2}} + \frac{c}{b} - 1$,令$x = \frac{c}{b}$,则$x \in (1,2)$,$f(x) = x^{2} + x - 1$,$1 < x < 2$,所以$f(x) = (x + \frac{1}{2})^{2} - \frac{5}{4} \in (1,5)$,所以$\frac{c^{2}}{b^{2}} + \frac{c}{b} - 1 \in (1,5)$,所以$\frac{a + c}{b}$的取值范围是$(1,5)$。

查看更多完整答案,请扫码查看

关闭