2025年金版新学案高三总复习数学北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年金版新学案高三总复习数学北师大版》

第117页
(1)(2023·全国乙卷)在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别是$a$,$b$,$c$,若$a\cos B - b\cos A = c$,且$C = \dfrac{\pi}{5}$,则$B$=(
C
)

A.$\dfrac{\pi}{10}$
B.$\dfrac{\pi}{5}$
C.$\dfrac{3\pi}{10}$
D.$\dfrac{2\pi}{5}$
答案:
(1)C 由射影定理$a\cos B - b\cos A = c = a\cos B + b\cos A$,则$\cos A = 0$,$A = \frac{\pi}{2}$,则$B = \pi - A - C = \pi - \frac{\pi}{2} - \frac{\pi}{5} = \frac{3\pi}{10}$. 故选C.
(2)在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别是$a$,$b$,$c$,若$a = b\cos C + c\sin B$,且$\triangle ABC$的面积为$1 + \sqrt{2}$,则$b$的最小值为(
A
)

A.$2$
B.$3$
C.$\sqrt{2}$
D.$\sqrt{3}$
答案:
(2)A 由射影定理$a = b\cos C + c\cos B$和条件$a = b\cos C + c\sin B$,所以$\sin B = \cos B$,又$B \in (0,\pi)$,所以$B = \frac{\pi}{4}$,又$S_{\triangle ABC} = 1 + \sqrt{2}$,所以$\frac{1}{2}ac\sin B = 1 + \sqrt{2}$,即$ac = 4 + 2\sqrt{2}$.所以$b^{2} = a^{2} + c^{2} - 2ac\cos B = a^{2} + c^{2} - \sqrt{2}ac \geq 2ac - \sqrt{2}ac = 4$,当且仅当$a = c$时取等号,所以$b$的最小值为$2$.故选A.
(2025·陕西渭南模拟)已知$\triangle ABC$中,角$A$,$B$,$C$所对的边分别是$a$,$b$,$c$,若$b\cos C + c\cos B = b$,且$a = c\cos B$,则$\triangle ABC$是(
D
)

A.锐角三角形
B.钝角三角形
C.等边三角形
D.等腰直角三角形
答案: 典例2 D 由射影定理$b\cos C + c\cos B = a = b$,又$a = c\cos B = c\cos B + b\cos C$,故$\cos C = 0$,因为$C \in (0,\pi)$,所以$C = \frac{\pi}{2}$,故$\triangle ABC$为等腰直角三角形.故选D.
(1)在$\triangle ABC$中,角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$,若$a = b\cos C$,且$c = 6$,$A = \dfrac{\pi}{6}$,则$\triangle ABC$的面积为(
D
)

A.$2\sqrt{3}$
B.$3\sqrt{3}$
C.$4\sqrt{3}$
D.$6\sqrt{3}$
答案:
(1)D 由射影定理$a = b\cos C + c\cos B$,又$a = b\cos C$,所以$c\cos B = 0$,故$\cos B = 0$,因为$B \in (0,\pi)$,所以$B = \frac{\pi}{2}$,故$\triangle ABC$为直角三角形.又$c = 6$,$A = \frac{\pi}{6}$,所以$a = 6\tan\frac{\pi}{6} = 2\sqrt{3}$,所以$S_{\triangle ABC} = \frac{1}{2}ac = 6\sqrt{3}$.故选D.
(2)在$\triangle ABC$中,内角$A$,$B$,$C$的对边分别是$a$,$b$,$c$,$c = a\cos B + 2\cos A$,$2b = c$,若$\cos C = -\dfrac{1}{4}$,则$\triangle ABC$的面积为
$\frac{3\sqrt{15}}{4}$

答案:
(2)$\frac{3\sqrt{15}}{4}$ 由三角形中的射影定理$c = a\cos B + b\cos A$,结合已知条件$c = a\cos B + 2\cos A$,可得$b = 2$,又因为$2b = c$,所以$c = 4$,由$c^{2} = a^{2} + b^{2} - 2ab\cos C$,可得$16 = a^{2} + 4 - 4a × (-\frac{1}{4})$,解得$a = 3$(负值舍去),所以三角形的面积为$\frac{1}{2}ab\sin C = \frac{1}{2} × 3 × 2 × \sqrt{1 - (-\frac{1}{4})^{2}} = \frac{3\sqrt{15}}{4}$.
(1)(2025·河南南阳模拟)在$\triangle ABC$中,已知$a = a\cos B + b\cos A = 1$,$\sin C = \dfrac{\sqrt{2}}{2}$,则(
B
)

A.$b = 1$
B.$b = \sqrt{2}$
C.$c = \sqrt{2}$
D.$c = \sqrt{3}$
答案:
(1)B 由$a\cos B + b\cos A = 1$,则$c = 1$;又$\sin C = \frac{\sqrt{2}}{2}$,$C \in (0,\pi)$,故$C = \frac{\pi}{4}$或$\frac{3\pi}{4}$;又$a = c = 1$,故$A = C$,显然$A = C = \frac{\pi}{4}$,则$B = \pi - \frac{\pi}{4} - \frac{\pi}{4} = \frac{\pi}{2}$,$\triangle ABC$为等腰直角三角形,故$b^{2} = a^{2} + c^{2} = 2$,解得$b = \sqrt{2}$.故选B.
(2)已知$\triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$,$a\cos B + b\cos A = 3$,且$\sin^{2}\dfrac{A + B}{2} = \dfrac{3}{4}$,$b = 3$,则$\triangle ABC$的形状为(
C
)

A.直角三角形
B.钝角三角形
C.等边三角形
D.等腰直角三角形
答案:
(2)C 因为$a\cos B + b\cos A = 3$,所以$c = a\cos B + b\cos A = 3$,又因为$\sin^{2}\frac{A + B}{2} = \frac{3}{4}$,所以$\frac{1 - \cos(A + B)}{2} = \frac{1 + \cos C}{2} = \frac{3}{4}$,所以$\cos C = \frac{1}{2}$,所以$C = \frac{\pi}{3}$,又因为$b = c = 3$,$C = \frac{\pi}{3}$,所以$\triangle ABC$是等边三角形.故选C.
(3)(2025·天津南开区模拟)$\triangle ABC$的面积为$S$。若$b\cos C + c\cos B = a\sin A$,$S = \dfrac{1}{4}(b^{2} + a^{2} - c^{2})$,则角$B$等于
$\frac{\pi}{4}$
答案:
(3)$\frac{\pi}{4}$ 根据题意知$b\cos C + c\cos B = a = a\sin A$,则$\sin A = 1$,所以得$A = \frac{\pi}{2}$,由$S = \frac{1}{4}(b^{2} + a^{2} - c^{2}) = \frac{1}{4} × 2ba\cos C = \frac{1}{2}ba\sin C$,可得$\tan C = 1$,$0 < C < \frac{\pi}{2}$,所以$C = \frac{\pi}{4}$,所以$B = \pi - A - C = \pi - \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$.

查看更多完整答案,请扫码查看

关闭