2025年金版新学案高三总复习数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第39页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
(2025·山东济南模拟)已知函数 $ f(x) $ 的定义域为 $ \mathbf{R} $,且 $ yf(x) - xf(y) = xy(x - y) $,则下列结论一定成立的是(
A.$ f(1) = 1 $
B.$ f(x) $ 为偶函数
C.$ f(x) $ 有最小值
D.$ f(x) $ 在 $ [0,1] $ 上单调递增
C
)A.$ f(1) = 1 $
B.$ f(x) $ 为偶函数
C.$ f(x) $ 有最小值
D.$ f(x) $ 在 $ [0,1] $ 上单调递增
答案:
对点练2.C 由于函数$f(x)$的定义域为$\mathbf{R}$,且$yf(x) - xf(y) = xy(x - y)$,令$y = 1$,则$f(x) - xf(1) = x(x - 1)$,得$f(x) = x^{2} + [f(1) - 1]x$,$x = 1$时,$f(1) = 1^{2} + [f(1) - 1]$恒成立,无法确定$f(1) = 1$,故A不一定成立;由于$f(1) = 1$不一定成立,故$f(x) = x^{2} + [f(1) - 1]x$不一定为偶函数,故B不一定成立;由于$f(x) = x^{2} + [f(1) - 1]x$的对称轴为$x = - \frac{1}{2} · [f(1) - 1]$与$[0,1]$的位置关系不确定,故$f(x)$在$[0,1]$上不一定单调递增,故D也不一定成立,由于$f(x) = x^{2} + [f(1) - 1]x$表示开口向上的抛物线,故函数$f(x)$必有最小值,故C一定成立.故选C.
(2022·新课标Ⅱ卷)已知函数 $ f(x) $ 的定义域为 $ \mathbf{R} $,且 $ f(x + y) + f(x - y) = f(x)f(y) $,$ f(1) = 1 $,则 $ \sum_{k = 1}^{22} f(k) = $(
A.$ -3 $
B.$ -2 $
C.$ 0 $
D.$ 1 $
A
)A.$ -3 $
B.$ -2 $
C.$ 0 $
D.$ 1 $
答案:
典例3 A 法一:赋值加性质:因为$f(x + y) + f(x - y) = f(x)f(y)$,令$x = 1$,$y = 0$可得$2f(1) = f(1)f(0)$,所以$f(0) = 2$,令$x = 0$,得$f(y) + f( - y) = 2f(y)$,即$f(y) = f( - y)$,所以函数$f(x)$为偶函数,令$y = 1$得,$f(x + 1) + f(x - 1) = f(x)f(1) = f(x)$,即有$f(x + 2) + f(x) = f(x + 1)$,从而可知$f(x + 2) = - f(x - 1)$,$f(x - 1) = - f(x - 4)$,故$f(x + 2) = f(x - 4)$,即$f(x) = f(x + 6)$,所以函数$f(x)$的一个周期为$6$.因为$f(2) = f(1) - f(0) = 1 - 2 = - 1$,$f(3) = f(2) - f(1) = - 1 - 1 = - 2$,$f(4) = f( - 2) = f(2) = - 1$,$f(5) = f( - 1) = f(1) = 1$,$f(6) = f(0) = 2$,所以一个周期内的$f(1) + f(2) + ·s + f(6) = 0$.由于$22$除以$6$余$4$,所以$\sum_{k = 1}^{22}f(k) = f(1) + f(2) + f(3) + f(4) = 1 - 1 - 2 - 1 = - 3$.故选A.
法二:构造特殊函数:由$f(x + y) + f(x - y) = f(x)f(y)$,设$f(x) = a\cos\omega x$,则由法一中$f(0) = 2$,$f(1) = 1$知$a = 2$,$a\cos\omega = 1$,解得$\cos\omega = \frac{1}{2}$,取$\omega = \frac{\pi}{3}$,所以$f(x) = 2\cos\frac{\pi}{3}x$,则$f(x + y) + f(x - y) = 2\cos(\frac{\pi}{3}x + \frac{\pi}{3}y) + 2\cos(\frac{\pi}{3}x - \frac{\pi}{3}y) = 4\cos\frac{\pi}{3}x\cos\frac{\pi}{3}y = f(x)f(y)$,所以$f(x) = 2\cos\frac{\pi}{3}x$符合条件,因此$f(x)$的周期$T = \frac{2\pi}{\frac{\pi}{3}} = 6$,$f(0) = 2$,$f(1) = 1$,且$f(2) = - 1$,$f(3) = - 2$,$f(4) = - 1$,$f(5) = 1$,$f(6) = 2$,所以$f(1) + f(2) + f(3) + f(4) + f(5) + f(6) = 0$,由于$22$除以$6$余$4$,所以$\sum_{k = 1}^{22}f(k) = f(1) + f(2) + f(3) + f(4) = 1 - 1 - 2 - 1 = - 3$.故选A.
法二:构造特殊函数:由$f(x + y) + f(x - y) = f(x)f(y)$,设$f(x) = a\cos\omega x$,则由法一中$f(0) = 2$,$f(1) = 1$知$a = 2$,$a\cos\omega = 1$,解得$\cos\omega = \frac{1}{2}$,取$\omega = \frac{\pi}{3}$,所以$f(x) = 2\cos\frac{\pi}{3}x$,则$f(x + y) + f(x - y) = 2\cos(\frac{\pi}{3}x + \frac{\pi}{3}y) + 2\cos(\frac{\pi}{3}x - \frac{\pi}{3}y) = 4\cos\frac{\pi}{3}x\cos\frac{\pi}{3}y = f(x)f(y)$,所以$f(x) = 2\cos\frac{\pi}{3}x$符合条件,因此$f(x)$的周期$T = \frac{2\pi}{\frac{\pi}{3}} = 6$,$f(0) = 2$,$f(1) = 1$,且$f(2) = - 1$,$f(3) = - 2$,$f(4) = - 1$,$f(5) = 1$,$f(6) = 2$,所以$f(1) + f(2) + f(3) + f(4) + f(5) + f(6) = 0$,由于$22$除以$6$余$4$,所以$\sum_{k = 1}^{22}f(k) = f(1) + f(2) + f(3) + f(4) = 1 - 1 - 2 - 1 = - 3$.故选A.
(1)(2025·吉林长春模拟)已知函数 $ f(x) $ 的定义域为 $ \mathbf{R} $,且 $ f(x + y) + f(x - y) = 2f(x)f(y) $,$ f(0) = 1 $,$ f(3x + 1) = -f(-3x + 1) $,则 $ \sum_{k = 0}^{2025} f(k) = $(
A.$ -2 $
B.$ -1 $
C.$ 0 $
D.$ 1 $
D
)A.$ -2 $
B.$ -1 $
C.$ 0 $
D.$ 1 $
答案:
(1)D 由题意知函数$f(x)$的定义域为$\mathbf{R}$,且$f(x + y) + f(x - y) = 2f(x)f(y)$,$f(0) = 1$,令$x = 0$,则$f(y) + f( - y) = 2f(y)$,即$f( - y) = f(y)$,故$f(x)$为偶函数;又$f(3x + 1) = - f( - 3x + 1)$,令$x = 0$,则$f(1) = - f(1)$,所以$f(1) = 0$,又由$f(3x + 1) = - f( - 3x + 1)$,得$f(x + 1) + f( - x + 1) = 0$,即$f(x + 2) = - f( - x)$,又结合$f(x)$为偶函数,则$f(x + 2) = - f(x)$,故$f(x + 4) = - f(x + 2) = f(x)$,即$4$为$f(x)$的周期,故$f(3) = f( - 1) = f(1) = 0$,$f(4) = f(0) = 1$,故$\sum_{k = 1}^{2024}f(k) = f(0) + [f(1) + f(2) + ·s + f(2024)] + f(2025)=1 + 506[f(1) + f(2) + f(3) + f(4)] + f(1) = 1 + 506(0 - 1 + 0 + 1) + 0 = 1$.故选D.
(1)D 由题意知函数$f(x)$的定义域为$\mathbf{R}$,且$f(x + y) + f(x - y) = 2f(x)f(y)$,$f(0) = 1$,令$x = 0$,则$f(y) + f( - y) = 2f(y)$,即$f( - y) = f(y)$,故$f(x)$为偶函数;又$f(3x + 1) = - f( - 3x + 1)$,令$x = 0$,则$f(1) = - f(1)$,所以$f(1) = 0$,又由$f(3x + 1) = - f( - 3x + 1)$,得$f(x + 1) + f( - x + 1) = 0$,即$f(x + 2) = - f( - x)$,又结合$f(x)$为偶函数,则$f(x + 2) = - f(x)$,故$f(x + 4) = - f(x + 2) = f(x)$,即$4$为$f(x)$的周期,故$f(3) = f( - 1) = f(1) = 0$,$f(4) = f(0) = 1$,故$\sum_{k = 1}^{2024}f(k) = f(0) + [f(1) + f(2) + ·s + f(2024)] + f(2025)=1 + 506[f(1) + f(2) + f(3) + f(4)] + f(1) = 1 + 506(0 - 1 + 0 + 1) + 0 = 1$.故选D.
(2)(多选题)(2025·辽宁沈阳模拟)已知定义域为 $ \mathbf{R} $ 的函数 $ f(x) $ 满足 $ f(x + y) = f(x)f(y) - f(1 - x)f(1 - y) $,且 $ f(0) \neq 0 $,$ f(-1) = 0 $,则(
A.$ f(1) = 0 $
B.$ f(x) $ 是偶函数
C.$ [f(x)]^2 + [f(1 + x)]^2 = 1 $
D.$ \sum_{i = 1}^{2024} f(i) = -1 $
ABC
)A.$ f(1) = 0 $
B.$ f(x) $ 是偶函数
C.$ [f(x)]^2 + [f(1 + x)]^2 = 1 $
D.$ \sum_{i = 1}^{2024} f(i) = -1 $
答案:
(2)ABC 对于A,由$f(x + y) = f(x)f(y) - f(1 - x)f(1 - y)$,令$x = y = \frac{1}{2}$,则$f(1) = [f(\frac{1}{2})]^{2} - [f(1 - \frac{1}{2})]^{2} = 0$,故A正确;对于B,令$x = y = 0$,则$f(0) = [f(0)]^{2} - [f(1)]^{2}=[f(0)]^{2}$,因为$f(0) \neq 0$,故$f(0) = 1$,令$y = 1$,则$f(x + 1) = f(x)f(1) - f(1 - x)f(0) = - f(1 - x)$ ①,所以函数$f(x)$关于点$(1,0)$成中心对称,令$x = y = 1$,则$f(2) = [f(1)]^{2} - [f(0)]^{2} = - 1$,令$y = 2$,则$f(x + 2) = f(x)f(2) - f(1 - x)f( - 1) = - f(x)$ ②,由①可得$f(x + 2) = - f( - x)$ ③,由②③可知$f( - x) = f(x)$,且函数$f(x)$的定义域为$\mathbf{R}$,则函数$f(x)$是偶函数,故B正确;令$y = - x$,则$f(0) = f(x)f( - x) - f(1 - x)f(1 + x)$,因为$f(0) = 1$,$f( - x) = f(x)$,$f(x + 1) = - f(1 - x)$,代入上式中得,$[f(x)]^{2} + [f(1 + x)]^{2} = 1$,故C正确;对于D,由上可知$f(x + 4) = - f(x + 2) = f(x)$,故函数$f(x)$的一个周期为$4$,故$f(4) = f(0) = 1$,令$x = 2$,$y = 1$,则$f(3) = f(2)f(1) - f( - 1)f(0) = 0$,所以$f(1) + f(2) + f(3) + f(4) = 0+( - 1)+0 + 1 = 0$,则$\sum_{i = 1}^{2024}f(i) = 506 × 0 = 0$,故D错误.故选ABC.
(2)ABC 对于A,由$f(x + y) = f(x)f(y) - f(1 - x)f(1 - y)$,令$x = y = \frac{1}{2}$,则$f(1) = [f(\frac{1}{2})]^{2} - [f(1 - \frac{1}{2})]^{2} = 0$,故A正确;对于B,令$x = y = 0$,则$f(0) = [f(0)]^{2} - [f(1)]^{2}=[f(0)]^{2}$,因为$f(0) \neq 0$,故$f(0) = 1$,令$y = 1$,则$f(x + 1) = f(x)f(1) - f(1 - x)f(0) = - f(1 - x)$ ①,所以函数$f(x)$关于点$(1,0)$成中心对称,令$x = y = 1$,则$f(2) = [f(1)]^{2} - [f(0)]^{2} = - 1$,令$y = 2$,则$f(x + 2) = f(x)f(2) - f(1 - x)f( - 1) = - f(x)$ ②,由①可得$f(x + 2) = - f( - x)$ ③,由②③可知$f( - x) = f(x)$,且函数$f(x)$的定义域为$\mathbf{R}$,则函数$f(x)$是偶函数,故B正确;令$y = - x$,则$f(0) = f(x)f( - x) - f(1 - x)f(1 + x)$,因为$f(0) = 1$,$f( - x) = f(x)$,$f(x + 1) = - f(1 - x)$,代入上式中得,$[f(x)]^{2} + [f(1 + x)]^{2} = 1$,故C正确;对于D,由上可知$f(x + 4) = - f(x + 2) = f(x)$,故函数$f(x)$的一个周期为$4$,故$f(4) = f(0) = 1$,令$x = 2$,$y = 1$,则$f(3) = f(2)f(1) - f( - 1)f(0) = 0$,所以$f(1) + f(2) + f(3) + f(4) = 0+( - 1)+0 + 1 = 0$,则$\sum_{i = 1}^{2024}f(i) = 506 × 0 = 0$,故D错误.故选ABC.
(多选题)(2023·新课标Ⅰ卷)已知函数 $ f(x) $ 的定义域为 $ \mathbf{R} $,$ f(xy) = y^2f(x) + x^2f(y) $,则(
A.$ f(0) = 0 $
B.$ f(1) = 0 $
C.$ f(x) $ 是偶函数
D.$ x = 0 $ 为 $ f(x) $ 的极小值点
ABC
)A.$ f(0) = 0 $
B.$ f(1) = 0 $
C.$ f(x) $ 是偶函数
D.$ x = 0 $ 为 $ f(x) $ 的极小值点
答案:
典例4 ABC 法一:赋值加性质:因为$f(xy) = y^{2}f(x) + x^{2}f(y)$,对于A,令$x = y = 0$,$f(0) = 0f(0) + 0f(0) = 0$,故A正确;对于B,令$x = y = 1$,$f(1) = 1 × f(1) + 1 × f(1)$,则$f(1) = 0$,故B正确;对于C,令$x = y = - 1$,$f(1) = f( - 1) + f( - 1) = 2f( - 1)$,则$f( - 1) = 0$,令$y = - 1$,$f( - x) = f(x) + x^{2}f( - 1) = f(x)$,又函数$f(x)$的定义域为$\mathbf{R}$,所以$f(x)$为偶函数,故C正确;对于D,不妨令$f(x) = 0$,显然符合题设条件,此时$f(x)$无极值,故D错误.故选ABC.
法二:构造特殊函数:对于D,当$x^{2}y^{2} \neq 0$时,对$f(xy) = y^{2}f(x) + x^{2}f(y)$两边同时除以$x^{2}y^{2}$,得到$\frac{f(xy)}{x^{2}y^{2}} = \frac{f(x)}{x^{2}} + \frac{f(y)}{y^{2}}$,故可以设$f(x) = x^{2}g(x)$,当$x > 0$时,则$f(x) = \ln|x| · |x|$,当$x > 0$时,$f(x) = x^{2}\ln x$,则$f^{\prime}(x) = 2x\ln x + x^{2} · \frac{1}{x} = x(2\ln x + 1)$,令$f^{\prime}(x) < 0$,得$0 < x < e^{- \frac{1}{2}}$;令$f^{\prime}(x) > 0$,得$x > e^{- \frac{1}{2}}$;故$f(x)$在$(0,e^{- \frac{1}{2}})$上单调递减,在$(e^{- \frac{1}{2}}, + \infty)$上单调递增,因为$f(x)$为偶函数,所以$f(x)$在$( - e^{- \frac{1}{2}},0)$上单调递增,在$( - \infty, - e^{- \frac{1}{2}})$上单调递减,显然,此时$x = 0$是$f(x)$的极大值,故D错误;由$f(x)$解析式及图象易知ABC正确.故选ABC.
典例4 ABC 法一:赋值加性质:因为$f(xy) = y^{2}f(x) + x^{2}f(y)$,对于A,令$x = y = 0$,$f(0) = 0f(0) + 0f(0) = 0$,故A正确;对于B,令$x = y = 1$,$f(1) = 1 × f(1) + 1 × f(1)$,则$f(1) = 0$,故B正确;对于C,令$x = y = - 1$,$f(1) = f( - 1) + f( - 1) = 2f( - 1)$,则$f( - 1) = 0$,令$y = - 1$,$f( - x) = f(x) + x^{2}f( - 1) = f(x)$,又函数$f(x)$的定义域为$\mathbf{R}$,所以$f(x)$为偶函数,故C正确;对于D,不妨令$f(x) = 0$,显然符合题设条件,此时$f(x)$无极值,故D错误.故选ABC.
法二:构造特殊函数:对于D,当$x^{2}y^{2} \neq 0$时,对$f(xy) = y^{2}f(x) + x^{2}f(y)$两边同时除以$x^{2}y^{2}$,得到$\frac{f(xy)}{x^{2}y^{2}} = \frac{f(x)}{x^{2}} + \frac{f(y)}{y^{2}}$,故可以设$f(x) = x^{2}g(x)$,当$x > 0$时,则$f(x) = \ln|x| · |x|$,当$x > 0$时,$f(x) = x^{2}\ln x$,则$f^{\prime}(x) = 2x\ln x + x^{2} · \frac{1}{x} = x(2\ln x + 1)$,令$f^{\prime}(x) < 0$,得$0 < x < e^{- \frac{1}{2}}$;令$f^{\prime}(x) > 0$,得$x > e^{- \frac{1}{2}}$;故$f(x)$在$(0,e^{- \frac{1}{2}})$上单调递减,在$(e^{- \frac{1}{2}}, + \infty)$上单调递增,因为$f(x)$为偶函数,所以$f(x)$在$( - e^{- \frac{1}{2}},0)$上单调递增,在$( - \infty, - e^{- \frac{1}{2}})$上单调递减,显然,此时$x = 0$是$f(x)$的极大值,故D错误;由$f(x)$解析式及图象易知ABC正确.故选ABC.
(多选题)(2025·广东深圳模拟)已知函数 $ f(x) $ 的定义域为 $ \mathbf{R} $,且 $ f(x + y)f(x - y) = f^2(x) - f^2(y) $,$ f(1) = 1 $,$ f(2) = 0 $,则下列说法中正确的是(
A.$ f(x) $ 为偶函数
B.$ f(3) = -1 $
C.$ f(-1) = -f(5) $
D.$ \sum_{k = 1}^{2026} f(k) = 0 $
BC
)A.$ f(x) $ 为偶函数
B.$ f(3) = -1 $
C.$ f(-1) = -f(5) $
D.$ \sum_{k = 1}^{2026} f(k) = 0 $
答案:
对点练4.BC 对于A,因为$f(x)$的定义域为$\mathbf{R}$,且$f(x + y)f(x - y) = f^{2}(x) - f^{2}(y)$,令$x = y = 0$,则$f(0)f(0) = f^{2}(0) - f^{2}(0)$,故$f^{2}(0) = 0$,令$x = 0$,则$f(y)f( - y) = - f^{2}(y)$,又$f(1) = 1$,则$f(y)$不恒为$0$,故$f( - y) = - f(y)$,所以$f(x)$为奇函数,故A错误;对于B,令$x = 2$,$y = 1$,则$f(3)f(1) = f^{2}(2) - f^{2}(1)$,而$f(1) = 1$,$f(2) = 0$,所以$f(3) = - 1$,故B正确;对于C,由B可知,$f(3) = - 1$,令$x = 3$,$y = 2$,则$f(5)f(1) = f^{2}(3) - f^{2}(2)$,所以$f(5) = 1$,又因为$f(x)$为奇函数,所以$f( - 1) = - f(1) = - 1$,所以$f( - 1) = - f(5)$,故C正确;对于D,由B以及$f(x + 2)f(x - 2) = f^{2}(x)$,可得$f(7) = - 1$,$f(9) = 1$,$f(11) = - 1$,所以$f(2k + 1) = ( - 1)^{k}(k \in \mathbf{N})$,令$x = 2k + 2$,$y = 2k$得$f^{2}(2k + 2) - f^{2}(2k) = f(4k + 2)f(2) = f(4k + 2) × 0 = 0$,结合$f(2) = 0$递推可得$f(2k) = 0(k \in \mathbf{N})$,因为$2026 ÷ 4 = 506·s·s2$,故$\sum_{k = 1}^{2026}f(k) = f(1) + f(2) = 1$,故D错误.故选BC.
1. 幂函数
(1) 定义:一般地,形如 $ y = x^{\alpha} $($ \alpha $ 为常数)的函数,即底数是自变量、指数是常数的函数称为幂函数。
(2) 简单幂函数的图象和性质


(1) 定义:一般地,形如 $ y = x^{\alpha} $($ \alpha $ 为常数)的函数,即底数是自变量、指数是常数的函数称为幂函数。
(2) 简单幂函数的图象和性质
答案:
1.
(2)$\{x \mid x \neq 0\}$ $[0, +\infty)$ $[0, +\infty)$ $x \in (-\infty,0)$减,$x \in (0, +\infty)$减 奇函数
(2)$\{x \mid x \neq 0\}$ $[0, +\infty)$ $[0, +\infty)$ $x \in (-\infty,0)$减,$x \in (0, +\infty)$减 奇函数
查看更多完整答案,请扫码查看