2025年金版新学案高三总复习数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年金版新学案高三总复习数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第120页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
(1)(2025·浙江杭州模拟)某人的正北方有一座高塔,此时测得塔顶的仰角为$60^{\circ}$。随后此人沿北偏东$60^{\circ}$的方向前进20米,再测得塔顶的仰角为$45^{\circ}$。那么,此人在行进过程中距离塔顶的最近距离为(人的身高忽略不计)(
A. $5\sqrt{5}$
B. $5\sqrt{10}$
C. 20
D. $5\sqrt{15}$
(2)(2025·安徽蚌埠模拟)在一堂数学实践探究课中,同学们用镜面反射法测量学校钟楼的高度。如图所示,将小镜子放在操场的水平地面上,人退后至从镜中能看到钟楼顶部的位置,此时测量人和小镜子的距离为$a_1 = 1.00$ m,之后将小镜子前移$a = 6.00$ m,重复之前的操作,再次测量人与小镜子的距离为$a_2 = 0.60$ m,已知人的眼睛距离地面的高度为$h = 1.75$ m,则钟楼的高度大约是(

A. 27.75 m
B. 27.25 m
C. 26.75 m
D. 26.25 m
(3)(2025·江西瑞金模拟)如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为$15^{\circ}$,向山顶前进100 m到达B处,又测得C对于山坡的斜度为$45^{\circ}$,若CD = 50 m,$\sin15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$,且山坡对于地平面的坡度为θ,则$\cos\theta$等于(

A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{2}$
C. $\sqrt{3}-1$
D. $\sqrt{2}-1$
D
)A. $5\sqrt{5}$
B. $5\sqrt{10}$
C. 20
D. $5\sqrt{15}$
(2)(2025·安徽蚌埠模拟)在一堂数学实践探究课中,同学们用镜面反射法测量学校钟楼的高度。如图所示,将小镜子放在操场的水平地面上,人退后至从镜中能看到钟楼顶部的位置,此时测量人和小镜子的距离为$a_1 = 1.00$ m,之后将小镜子前移$a = 6.00$ m,重复之前的操作,再次测量人与小镜子的距离为$a_2 = 0.60$ m,已知人的眼睛距离地面的高度为$h = 1.75$ m,则钟楼的高度大约是(
D
)A. 27.75 m
B. 27.25 m
C. 26.75 m
D. 26.25 m
(3)(2025·江西瑞金模拟)如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为$15^{\circ}$,向山顶前进100 m到达B处,又测得C对于山坡的斜度为$45^{\circ}$,若CD = 50 m,$\sin15^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4}$,且山坡对于地平面的坡度为θ,则$\cos\theta$等于(
C
)A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{2}$
C. $\sqrt{3}-1$
D. $\sqrt{2}-1$
答案:
对点练1.
(1)D
(2)D
(3)C
(1)设塔$AB$的高为$x$,由题意得$\angle ACB = \angle BCD = 60^{\circ}$,$\angle ADB = 45^{\circ}$,则$CB = \frac{\sqrt{3}}{3}x$,$BD = x$,在$\triangle BCD$中,由余弦定理可得$BD^{2} = BC^{2} + CD^{2} - 2BC· CD·\cos\angle BCD$,所以$x^{2} = \frac{1}{3}x^{2} + 20^{2} - 2×\frac{\sqrt{3}}{3}x×20×\frac{1}{2}$,解得$x = 10\sqrt{3}$或$x = - 20\sqrt{3}$(舍去),所以$AC = 20$,$AD = 10\sqrt{6}$,在$\triangle ACD$中,由余弦定理可得$\cos\angle ACD = \frac{400 + 400 - 600}{2×20×20} = \frac{1}{4}$,所以$\sin\angle ACD = \sqrt{1 - (\frac{1}{4})^{2}} = \frac{\sqrt{15}}{4}$,所以$A$到$CD$的距离为$20×\frac{\sqrt{15}}{4} = 5\sqrt{15}$。故选D。
(2)如图,设钟楼的高度为$PQ$,由$\triangle MKE \sim \triangle PQE$,可得$EQ = \frac{PQ· KE}{MK} = \frac{a_{1}· PQ}{h}$,由$\triangle NTF \sim \triangle PQF$,可得$FQ = \frac{PQ· TF}{NT} = \frac{PQ· a_{2}}{h}$,故$EQ - FQ = \frac{a_{1}· PQ}{h} - \frac{a_{2}· PQ}{h} = \frac{(a_{1} - a_{2})PQ}{h} = a$,故$PQ = \frac{ah}{a_{1} - a_{2}} = \frac{6×1.75}{1 - 0.6} = \frac{10.5}{0.4} = 26.25 m$。故选D。

(3)因为$\angle CBD = 45^{\circ}$,所以$\angle ACB = 45^{\circ} - 15^{\circ} = 30^{\circ}$,在$\triangle ABC$中,由正弦定理可得$\frac{BC}{\sin 15^{\circ}} = \frac{100}{\sin 30^{\circ}}$,解得$BC = 50(\sqrt{6} - \sqrt{2})$,在$\triangle BCD$中,由正弦定理可得$\frac{50(\sqrt{6} - \sqrt{2})}{\sin\angle BDC} = \frac{\sin 45^{\circ}}{\sin 15^{\circ}}$,解得$\sin\angle BDC = \sqrt{3} - 1$,即$\sin(\theta + 90^{\circ}) = \sqrt{3} - 1$,所以$\cos\theta = \sqrt{3} - 1$。故选C。
对点练1.
(1)D
(2)D
(3)C
(1)设塔$AB$的高为$x$,由题意得$\angle ACB = \angle BCD = 60^{\circ}$,$\angle ADB = 45^{\circ}$,则$CB = \frac{\sqrt{3}}{3}x$,$BD = x$,在$\triangle BCD$中,由余弦定理可得$BD^{2} = BC^{2} + CD^{2} - 2BC· CD·\cos\angle BCD$,所以$x^{2} = \frac{1}{3}x^{2} + 20^{2} - 2×\frac{\sqrt{3}}{3}x×20×\frac{1}{2}$,解得$x = 10\sqrt{3}$或$x = - 20\sqrt{3}$(舍去),所以$AC = 20$,$AD = 10\sqrt{6}$,在$\triangle ACD$中,由余弦定理可得$\cos\angle ACD = \frac{400 + 400 - 600}{2×20×20} = \frac{1}{4}$,所以$\sin\angle ACD = \sqrt{1 - (\frac{1}{4})^{2}} = \frac{\sqrt{15}}{4}$,所以$A$到$CD$的距离为$20×\frac{\sqrt{15}}{4} = 5\sqrt{15}$。故选D。
(2)如图,设钟楼的高度为$PQ$,由$\triangle MKE \sim \triangle PQE$,可得$EQ = \frac{PQ· KE}{MK} = \frac{a_{1}· PQ}{h}$,由$\triangle NTF \sim \triangle PQF$,可得$FQ = \frac{PQ· TF}{NT} = \frac{PQ· a_{2}}{h}$,故$EQ - FQ = \frac{a_{1}· PQ}{h} - \frac{a_{2}· PQ}{h} = \frac{(a_{1} - a_{2})PQ}{h} = a$,故$PQ = \frac{ah}{a_{1} - a_{2}} = \frac{6×1.75}{1 - 0.6} = \frac{10.5}{0.4} = 26.25 m$。故选D。
(3)因为$\angle CBD = 45^{\circ}$,所以$\angle ACB = 45^{\circ} - 15^{\circ} = 30^{\circ}$,在$\triangle ABC$中,由正弦定理可得$\frac{BC}{\sin 15^{\circ}} = \frac{100}{\sin 30^{\circ}}$,解得$BC = 50(\sqrt{6} - \sqrt{2})$,在$\triangle BCD$中,由正弦定理可得$\frac{50(\sqrt{6} - \sqrt{2})}{\sin\angle BDC} = \frac{\sin 45^{\circ}}{\sin 15^{\circ}}$,解得$\sin\angle BDC = \sqrt{3} - 1$,即$\sin(\theta + 90^{\circ}) = \sqrt{3} - 1$,所以$\cos\theta = \sqrt{3} - 1$。故选C。
(1)若A,B,C,D四点共圆,求AC;
答案:
(1)在$\triangle ABC$中,由余弦定理得$AC^{2} = AB^{2} + BC^{2} - 2AB· BC\cos\angle ABC = 8 + 8 - 2×8·\cos\angle ABC = 16 - 16\cos\angle ABC$,在$\triangle ACD$中,由余弦定理得$AC^{2} = AD^{2} + CD^{2} - 2AD· CD\cos\angle ADC = 16 + 4 - 2×8·\cos\angle ADC = 20 - 16\cos\angle ADC$,因为$A$,$B$,$C$,$D$四点共圆,所以$\angle ABC + \angle ADC = \pi$,因此$\cos\angle ADC = - \cos\angle ABC$,上述两式相加得$2AC^{2} = 36$,所以$AC = 3\sqrt{2}$(负值已舍去)。
(1)在$\triangle ABC$中,由余弦定理得$AC^{2} = AB^{2} + BC^{2} - 2AB· BC\cos\angle ABC = 8 + 8 - 2×8·\cos\angle ABC = 16 - 16\cos\angle ABC$,在$\triangle ACD$中,由余弦定理得$AC^{2} = AD^{2} + CD^{2} - 2AD· CD\cos\angle ADC = 16 + 4 - 2×8·\cos\angle ADC = 20 - 16\cos\angle ADC$,因为$A$,$B$,$C$,$D$四点共圆,所以$\angle ABC + \angle ADC = \pi$,因此$\cos\angle ADC = - \cos\angle ABC$,上述两式相加得$2AC^{2} = 36$,所以$AC = 3\sqrt{2}$(负值已舍去)。
(2)求四边形ABCD面积的最大值。
答案:
(2)由
(1)得$16 - 16\cos\angle ABC = 20 - 16\cos\angle ADC$,化简得$\cos\angle ADC - \cos\angle ABC = \frac{1}{4}$,则$\cos^{2}\angle ADC - 2\cos\angle ADC\cos\angle ABC + \cos^{2}\angle ABC = \frac{1}{16}$①。四边形$ABCD$的面积$S = \frac{1}{2}AB· BC\sin\angle ABC + \frac{1}{2}AD· CD\sin\angle ADC = \frac{1}{2}×2\sqrt{2}×2\sqrt{2}\sin\angle ABC + \frac{1}{2}×4×2\sin\angle ADC = 4(\sin\angle ADC + \sin\angle ABC)$,整理得$\sin\angle ADC + \sin\angle ABC = \frac{S}{4}$,则$\sin^{2}\angle ADC + 2\sin\angle ADC\sin\angle ABC + \sin^{2}\angle ABC = \frac{S^{2}}{16}$②,①②相加得$2 - 2(\cos\angle ADC\cos\angle ABC - \sin\angle ADC\sin\angle ABC) = \frac{1 + S^{2}}{16}$,即$2 - 2\cos(\angle ADC + \angle ABC) = \frac{1 + S^{2}}{16}$,由于$0 < \angle ADC < \pi$,$0 < \angle ABC < \pi$,所以当且仅当$\angle ADC + \angle ABC = \pi$时,$\cos(\angle ADC + \angle ABC)$取得最小值$-1$,此时四边形$ABCD$的面积最大,由$\frac{1 + S^{2}}{16} = 4$,解得$S = 3\sqrt{7}$,故四边形$ABCD$面积的最大值为$3\sqrt{7}$。
(2)由
(1)得$16 - 16\cos\angle ABC = 20 - 16\cos\angle ADC$,化简得$\cos\angle ADC - \cos\angle ABC = \frac{1}{4}$,则$\cos^{2}\angle ADC - 2\cos\angle ADC\cos\angle ABC + \cos^{2}\angle ABC = \frac{1}{16}$①。四边形$ABCD$的面积$S = \frac{1}{2}AB· BC\sin\angle ABC + \frac{1}{2}AD· CD\sin\angle ADC = \frac{1}{2}×2\sqrt{2}×2\sqrt{2}\sin\angle ABC + \frac{1}{2}×4×2\sin\angle ADC = 4(\sin\angle ADC + \sin\angle ABC)$,整理得$\sin\angle ADC + \sin\angle ABC = \frac{S}{4}$,则$\sin^{2}\angle ADC + 2\sin\angle ADC\sin\angle ABC + \sin^{2}\angle ABC = \frac{S^{2}}{16}$②,①②相加得$2 - 2(\cos\angle ADC\cos\angle ABC - \sin\angle ADC\sin\angle ABC) = \frac{1 + S^{2}}{16}$,即$2 - 2\cos(\angle ADC + \angle ABC) = \frac{1 + S^{2}}{16}$,由于$0 < \angle ADC < \pi$,$0 < \angle ABC < \pi$,所以当且仅当$\angle ADC + \angle ABC = \pi$时,$\cos(\angle ADC + \angle ABC)$取得最小值$-1$,此时四边形$ABCD$的面积最大,由$\frac{1 + S^{2}}{16} = 4$,解得$S = 3\sqrt{7}$,故四边形$ABCD$面积的最大值为$3\sqrt{7}$。
(2025·福建漳州模拟)如图,在四边形ABCD中,$\angle DAB = \frac{\pi}{2}$,$B = \frac{\pi}{6}$,且△ABC的外接圆半径为4。

(1)若BC = $4\sqrt{2}$,AD = $2\sqrt{2}$,求△ACD的面积;
(2)若$D = \frac{2\pi}{3}$,求BC - AD的最大值。
(1)若BC = $4\sqrt{2}$,AD = $2\sqrt{2}$,求△ACD的面积;
(2)若$D = \frac{2\pi}{3}$,求BC - AD的最大值。
答案:
对点练2.解:
(1)因为$B = \frac{\pi}{6}$,$\triangle ABC$的外接圆半径为$4$,所以$\frac{AC}{\sin B} = 8$,解得$AC = 4$。在$\triangle ABC$中,$BC = 4\sqrt{2}$,则$\frac{BC}{\sin\angle CAB} = \frac{4\sqrt{2}}{\sin\angle CAB} = 8$,解得$\sin\angle CAB = \frac{\sqrt{2}}{2}$。又$\angle CAB \in (0,\frac{\pi}{2})$,所以$\angle CAB = \frac{\pi}{4}$。在$\triangle ACD$中,$AC = 4$,$\angle DAC = \frac{\pi}{2} - \angle CAB = \frac{\pi}{4}$,$AD = 2\sqrt{2}$,所以$S_{\triangle ACD} = \frac{1}{2}×4×2\sqrt{2}×\frac{\sqrt{2}}{2} = 4$。
(2)设$\angle DAC = \theta$,$\theta \in (0,\frac{\pi}{3})$,又$D = \frac{2\pi}{3}$,所以$\angle ACD = \frac{\pi}{3} - \theta$。因为$\angle DAB = \frac{\pi}{2}$,所以$\angle CAB = \frac{\pi}{2} - \theta$。在$\triangle DAC$中,$AC = 4$,由正弦定理得$\frac{AC}{\sin D} = \frac{AD}{\sin\angle ACD}$,即$\frac{4}{\sin\frac{2\pi}{3}} = \frac{AD}{\sin(\frac{\pi}{3} - \theta)}$,解得$AD = \frac{8\sqrt{3}}{3}\sin(\frac{\pi}{3} - \theta) = \frac{8\sqrt{3}}{3}(\frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta) = 4\cos\theta - \frac{4\sqrt{3}}{3}\sin\theta$。在$\triangle ABC$中,$AC = 4$,由正弦定理得$\frac{AC}{\sin B} = \frac{BC}{\sin\angle CAB}$,即$\frac{4}{\sin\frac{\pi}{6}} = \frac{BC}{\sin(\frac{\pi}{2} - \theta)}$,解得$BC = 8\sin(\frac{\pi}{2} - \theta) = 8\cos\theta$。所以$BC - AD = 4(\cos\theta + \frac{\sqrt{3}}{3}\sin\theta) = \frac{8\sqrt{3}}{3}\sin(\theta + \frac{\pi}{3})$。又$\theta \in (0,\frac{\pi}{3})$,所以$\theta + \frac{\pi}{3} \in (\frac{\pi}{3},\frac{2\pi}{3})$,当且仅当$\theta + \frac{\pi}{3} = \frac{\pi}{2}$,即$\theta = \frac{\pi}{6}$时,$\sin(\theta + \frac{\pi}{3})$取得最大值$1$,所以$BC - AD$的最大值为$\frac{8\sqrt{3}}{3}$。
(1)因为$B = \frac{\pi}{6}$,$\triangle ABC$的外接圆半径为$4$,所以$\frac{AC}{\sin B} = 8$,解得$AC = 4$。在$\triangle ABC$中,$BC = 4\sqrt{2}$,则$\frac{BC}{\sin\angle CAB} = \frac{4\sqrt{2}}{\sin\angle CAB} = 8$,解得$\sin\angle CAB = \frac{\sqrt{2}}{2}$。又$\angle CAB \in (0,\frac{\pi}{2})$,所以$\angle CAB = \frac{\pi}{4}$。在$\triangle ACD$中,$AC = 4$,$\angle DAC = \frac{\pi}{2} - \angle CAB = \frac{\pi}{4}$,$AD = 2\sqrt{2}$,所以$S_{\triangle ACD} = \frac{1}{2}×4×2\sqrt{2}×\frac{\sqrt{2}}{2} = 4$。
(2)设$\angle DAC = \theta$,$\theta \in (0,\frac{\pi}{3})$,又$D = \frac{2\pi}{3}$,所以$\angle ACD = \frac{\pi}{3} - \theta$。因为$\angle DAB = \frac{\pi}{2}$,所以$\angle CAB = \frac{\pi}{2} - \theta$。在$\triangle DAC$中,$AC = 4$,由正弦定理得$\frac{AC}{\sin D} = \frac{AD}{\sin\angle ACD}$,即$\frac{4}{\sin\frac{2\pi}{3}} = \frac{AD}{\sin(\frac{\pi}{3} - \theta)}$,解得$AD = \frac{8\sqrt{3}}{3}\sin(\frac{\pi}{3} - \theta) = \frac{8\sqrt{3}}{3}(\frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta) = 4\cos\theta - \frac{4\sqrt{3}}{3}\sin\theta$。在$\triangle ABC$中,$AC = 4$,由正弦定理得$\frac{AC}{\sin B} = \frac{BC}{\sin\angle CAB}$,即$\frac{4}{\sin\frac{\pi}{6}} = \frac{BC}{\sin(\frac{\pi}{2} - \theta)}$,解得$BC = 8\sin(\frac{\pi}{2} - \theta) = 8\cos\theta$。所以$BC - AD = 4(\cos\theta + \frac{\sqrt{3}}{3}\sin\theta) = \frac{8\sqrt{3}}{3}\sin(\theta + \frac{\pi}{3})$。又$\theta \in (0,\frac{\pi}{3})$,所以$\theta + \frac{\pi}{3} \in (\frac{\pi}{3},\frac{2\pi}{3})$,当且仅当$\theta + \frac{\pi}{3} = \frac{\pi}{2}$,即$\theta = \frac{\pi}{6}$时,$\sin(\theta + \frac{\pi}{3})$取得最大值$1$,所以$BC - AD$的最大值为$\frac{8\sqrt{3}}{3}$。
查看更多完整答案,请扫码查看