2025年中考复习指导浙江科学技术出版社数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年中考复习指导浙江科学技术出版社数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年中考复习指导浙江科学技术出版社数学》

第169页
7. 如图1,在菱形ABCD中,∠B=60°,P是菱形内部一点,动点M从顶点B出发,沿线段BP运动到点P,再沿线段PA运动到顶点A,停止运动. 设点M运动的路程为x,$\frac{MA}{MC}=y$,表示y与x的函数关系的图象如图2所示,求菱形ABCD的边长.
答案: 5
解析:由图2知,当$0≤x≤4$时$y=1$,即$MA=MC$,故BP在AC的垂直平分线上。菱形$∠B=60°$,设边长为a,$AC=a$,$BP=m$,$PA=6-m$(总路程6)。$M=B$时$MA=MC=AB=BC=a$,$M=P$时$PA=PC=6-m$。在$\triangle ABP$中,由余弦定理$PA^2=AB^2+BP^2-2AB·BP\cos60°$,即$(6-m)^2=a^2+m^2-am$,又$a=BP+PA\cos60°$(几何关系),解得$a=5$。
8. 如图,在平面直角坐标系中,抛物线与x轴交于点A(-15,0),B(10,0),与y轴交于点D. 第二象限内的抛物线上点C的横坐标为-6,且AC=15,
(1)求该二次函数的函数表达式.
答案: $y=-\frac{1}{12}x^2-\frac{5}{12}x+\frac{25}{2}$
解析:设抛物线$y=a(x+15)(x-10)$。点$C(-6,y)$,$AC=15$,则$\sqrt{(-6+15)^2+y^2}=15$,$81+y^2=225$,$y=12$(第二象限)。代入得$12=a(9)(-16)$,$a=-\frac{1}{12}$,表达式为$y=-\frac{1}{12}(x^2+5x-150)=-\frac{1}{12}x^2-\frac{5}{12}x+\frac{25}{2}$。

查看更多完整答案,请扫码查看

关闭