2025年新课程学习指导高中数学必修第二册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



2. 若sin($\frac{3π}{4}$ + α) = $\frac{5}{13}$, cos($\frac{π}{4}$ - β) = $\frac{3}{5}$,且0 < α < $\frac{π}{4}$ < β < $\frac{3π}{4}$,求cos(α + β)的值.
答案: 解:
∵ 0 < α < $\frac{π}{4}$,$\frac{3π}{4}$ < $\frac{3π}{4}$ + α < π, - $\frac{π}{2}$ < $\frac{π}{4}$ - β < 0. 又
∵ sin($\frac{3π}{4}$ + α) = $\frac{5}{13}$,cos($\frac{π}{4}$ - β) = $\frac{3}{5}$,
∴ cos($\frac{3π}{4}$ + α) = - $\frac{12}{13}$,sin($\frac{π}{4}$ - β) = - $\frac{4}{5}$
∴ cos(α + β) = sin[$\frac{π}{2}$ + (α + β)] = sin[($\frac{3π}{4}$ + α) - ($\frac{π}{4}$ - β)] = sin($\frac{3π}{4}$ + α)cos($\frac{π}{4}$ - β) - cos($\frac{3π}{4}$ + α)sin($\frac{π}{4}$ - β) = $\frac{5}{13}$×$\frac{3}{5}$ - (- $\frac{12}{13}$)×(- $\frac{4}{5}$) = - $\frac{33}{65}$
[典例3] 已知α∈(0, $\frac{π}{2}$), β∈(- $\frac{π}{2}$, 0),且cos(α - β) = $\frac{3}{5}$, sinβ = - $\frac{\sqrt{2}}{10}$,则α = ________.
答案: $\frac{π}{4}$
1. 已知A,B都是锐角,且tanA = $\frac{1}{3}$, sinB = $\frac{\sqrt{5}}{5}$,则A + B = ________.
答案: $\frac{π}{4}$
2. 已知cosα = - $\frac{\sqrt{5}}{5}$, tanβ = $\frac{1}{3}$, π < α < $\frac{3π}{2}$, 0 < β < $\frac{π}{2}$,求α - β的值.
答案: 解:由cosα = - $\frac{\sqrt{5}}{5}$,π < α < $\frac{3π}{2}$,得sinα = - $\frac{2\sqrt{5}}{5}$,tanα = 2. 又tanβ = $\frac{1}{3}$,于是tan(α - β) = $\frac{tanα - tanβ}{1 + tanαtanβ}$ = $\frac{2 - \frac{1}{3}}{1 + 2×\frac{1}{3}}$ = 1. 由π < α < $\frac{3π}{2}$,0 < β < $\frac{π}{2}$,得$\frac{π}{2}$ < α - β < $\frac{3π}{2}$, 因此α - β = $\frac{5π}{4}$.

查看更多完整答案,请扫码查看

关闭