2025年核心素养新讲堂七年级数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年核心素养新讲堂七年级数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年核心素养新讲堂七年级数学》

第179页
12. 如图①,已知$\angle AOB = 120^{\circ}$,$\angle COD = 60^{\circ}$,$OM$ 在$\angle AOC$ 内,$ON$ 在$\angle BOD$ 内,$\angle AOM = \frac{1}{3}\angle AOC$,$\angle BON = \frac{1}{3}\angle BOD$。
(1)$\angle COD$ 从图①中的位置绕点 $O$ 逆时针旋转到 $OC$ 与 $OB$ 重合时,如图②,$\angle MON = $
100
$^{\circ}$;
(2)$\angle COD$ 从图②中的位置绕点 $O$ 逆时针旋转 $n^{\circ}(0 < n < 120$ 且 $n \neq 60)$,求$\angle MON$ 的度数;
(3)$\angle COD$ 从图②中的位置绕点 $O$ 顺时针旋转 $n^{\circ}(0 < n < 120)$,则 $n = $
50或70
时,$\angle MON = 2\angle BOC$。
答案:
12.
(1)$100$
(2)分两种情况:
①当$0 < n < 60$时,如图①,
    图
设$\angle AOM = x^{\circ}$,则$\angle AOC = 3x^{\circ}$,$\angle MOC = \angle AOC - \angle AOM = 2x^{\circ}$,$\angle BOC = \angle AOB - \angle AOC = 120^{\circ} - 3x^{\circ}$.$\therefore \angle BOD = \angle COD - \angle BOC = 60^{\circ} - (120^{\circ} - 3x^{\circ}) = 3x^{\circ} - 60^{\circ}$,$\therefore \angle BON = \frac{1}{3}\angle BOD = x^{\circ} - 20^{\circ}$,$\angle MON = \angle MOC + \angle BOC + \angle BON = 2x^{\circ} + 120^{\circ} - 3x^{\circ} + x^{\circ} - 20^{\circ} = 100^{\circ}$.
②当$60 < n < 120$时,如图②,
      图第12题
设$\angle AOM = x^{\circ}$,则$\angle AOC = 3x^{\circ}$,$\angle MOC = \angle AOC - \angle AOM = 2x^{\circ}$,$\therefore \angle BOD = \angle AOB - \angle COD - \angle AOC = 120^{\circ} - 60^{\circ} - 3x^{\circ} = 60^{\circ} - 3x^{\circ}$,$\therefore \angle DON = \frac{2}{3}\angle BOD = 40^{\circ} - 2x^{\circ}$,$\angle MON = \angle MOC + \angle COD + \angle DON = 2x^{\circ} + 60^{\circ} + 40^{\circ} - 2x^{\circ} = 100^{\circ}$.
(3)$50$或$70$
当$0 < n \leq 60$时,如图③,
 
此时$\angle MON = 100^{\circ} = 2\angle BOC = 2n^{\circ}$,$\therefore n = 50^{\circ}$.
当$60 < n < 120$时,如图④,
图图第12题
$\angle AOC = 360^{\circ} - \angle AOB - \angle BOC = 240^{\circ} - n^{\circ}$,$\therefore \angle COM = \frac{2}{3}\angle AOC = \frac{2}{3}(240^{\circ} - n^{\circ}) = 160^{\circ} - \frac{2}{3}n^{\circ}$,$\angle DON = \frac{2}{3}\angle BOD = \frac{2}{3}(60^{\circ} + n^{\circ}) = 40^{\circ} + \frac{2}{3}n^{\circ}$,$\therefore \angle MON = \angle DON + \angle COM - \angle COD = 40^{\circ} + \frac{2}{3}n^{\circ} + 160^{\circ} - \frac{2}{3}n^{\circ} - 60^{\circ} = 140^{\circ}$.$\therefore 2\angle BOC = 2n^{\circ}$,$\therefore n = 70^{\circ}$.
综上所述$n = 50$或$70$.

查看更多完整答案,请扫码查看

关闭