2025年课堂作业武汉出版社八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年课堂作业武汉出版社八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年课堂作业武汉出版社八年级数学上册人教版》

1. 在$\triangle ABC$中,$AD$为$BC$边上的中线,若$AB = 6$,$AC = 4$,设$AD = x$,则$x$的取值范围是(
C
)。

A.$0 < x < 10$
B.$2 < x < 8$
C.$1 < x < 5$
D.$2 < x < 10$
答案:
1.C
提示:如图,延长AD到点E,使AD = DE,连接BE.
V
$\because$AD是BC边上的中线,$\therefore BD = CD$.
在$\triangle ADC$和$\triangle EDB$中,
$\begin{cases}AD = ED,\\\angle ADC = \angle EDB,\\DC = DB,\end{cases}$
$\therefore \triangle ADC\cong \triangle EDB(SAS)$.
$\therefore AC = BE = 4$.
在$\triangle ABE$中,$\because AB - BE \lt AE \lt AB + BE$,
$\therefore 6 - 4 \lt 2x \lt 6 + 4$,$\therefore 1 \lt x \lt 5$.
2. 如图,在等腰三角形$ABC$中,$AB = AC$,$\angle BAC = \alpha$,点$D$为$AC$的中点,点$E$在$BD$的延长线上,将线段$CE$绕点$C$逆时针旋转$\alpha$得到线段$CF$,连接$AF$,求证$AF + BD = DE$。
答案:
2.如图,在DE上截取DG = BD.

在$\triangle DAB$和$\triangle DCG$中,$\begin{cases}AD = CD,\\\angle ADB = \angle CDG,\\BD = GD,\end{cases}$
$\therefore \triangle ABD\cong \triangle CGD(SAS)$.$\therefore CG = AB = AC$,$\angle DCG = \angle BAD = \alpha = \angle ECF$.
$\therefore \angle ACF = \angle GCE$.
在$\triangle ACF$和$\triangle GCE$中,$\begin{cases}AC = CG,\\\angle ACF = \angle GCE,\\CF = CE,\end{cases}$
$\therefore \triangle ACF\cong GCE(SAS)$.$\therefore AF = EG$.
$\because DG = BD$,$\therefore AF + BD = EG + DG = DE$.
3. 【发现问题】(1)数学活动课上,王老师提出了如下问题:如图①,在$\triangle ABC$中,$AB = 5$,$AC = 3$,求$BC$边上的中线$AD$的取值范围。
【探究方法】第一小组经过合作交流,得到了如下的解决方法:
①延长$AD$到点$E$,使得$DE = AD$;
②连接$BE$,通过三角形全等把$AB$,$AC$,$2AD$转化到$\triangle ABE$中;
③利用三角形的三边关系可得$AE$的取值范围为$AB - BE < AE < AB + BE$,从而得到$AD$的取值范围是
$1 \lt AD \lt 4$

【问题解决】(2)如图②,$OA = OB$,$OC = OD$,$\angle AOB$与$\angle COD$互补,连接$AC$,$BD$,$E$是$AC$的中点,求证$OE = \frac{1}{2}BD$。
(3)如图③,在(2)的条件下,若$\angle AOB = 90^{\circ}$,延长$EO$交$BD$于点$F$,$OF = 3$,$OE = 6$,求$\triangle AOC$的面积。
答案:
3.
(1)由题意知,$\triangle BDE\cong \triangle CDA$,$\therefore BE = AC = 3$,$DE = AD$.
$\therefore AE = 2AD$.$\because AB - BE \lt AE \lt AB + BE$,
$\therefore 5 - 3 \lt 2AD \lt 5 + 3$,即$1 \lt AD \lt 4$,
故答案为:$1 \lt AD \lt 4$.
(2)如图①,延长OE到点P,使OE = EP,连接AP.
图
$\because E$是AC的中点,$\therefore AE = CE$.
又$\because EP = OE$,$\angle AEP = \angle CEO$,
$\therefore \triangle AEP\cong \triangle CEO(SAS)$.
$\therefore AP = CO = OD$,$\angle CAP = \angle C$.
$\therefore AP// CO$.$\therefore \angle AOC + \angle OAP = 180^{\circ}$.
$\because \angle AOB$与$\angle COD$互补,
$\therefore \angle AOC + \angle BOD = 180^{\circ}$.$\therefore \angle BOD = \angle OAP$.
又$\because AP = OD$,$OA = OB$,
$\therefore \triangle BOD\cong \triangle OAP(SAS)$.$\therefore BD = OP$.
$\therefore OE = \frac{1}{2}OP = \frac{1}{2}BD$.
(3)如图②,延长OE到点P,使OE = EP,连接AP.
图
$\because \triangle AEP\cong \triangle CEO$,$\triangle BOD\cong \triangle OAP$,
$\therefore S_{\triangle AEP} = S_{\triangle CEO}$,$S_{\triangle BOD} = S_{\triangle OAP}$,$\angle D = \angle P = \angle COE$.
$\therefore S_{\triangle AOC} = S_{\triangle AOE} + S_{\triangle CEO} = S_{\triangle AOE} + S_{\triangle AEP} = S_{\triangle OAP} = S_{\triangle BOD}$.
$\because \angle AOB = \angle COD = 90^{\circ}$,$\therefore \angle COE + \angle DOF = 90^{\circ}$.
$\therefore \angle DOF + \angle D = 90^{\circ}$.$\therefore \angle OFD = 90^{\circ}$.
$\because OF = 3$,$OE = 6$,$\therefore BD = 2OE = 12$.
$\therefore S_{\triangle AOC} = S_{\triangle BOD} = \frac{1}{2}BD× OF = \frac{1}{2}×12×3 = 18$.
$\therefore \triangle AOC$的面积为18.

查看更多完整答案,请扫码查看

关闭