第5页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
1. 计算$(-2x^{3}y)^{2}$的结果是( )。
A. $4x^{5}y^{2}$
B. $-4x^{6}y$
C. $4x^{6}y^{2}$
D. $-4x^{6}y^{4}$
A. $4x^{5}y^{2}$
B. $-4x^{6}y$
C. $4x^{6}y^{2}$
D. $-4x^{6}y^{4}$
答案:
C
2. 下列计算中正确的是( )。
A. $(a^{7})^{2}=a^{9}$
B. $a^{7}\cdot a^{2}=a^{14}$
C. $2a^{2}+3a^{3}=5a^{5}$
D. $(ab)^{3}=a^{3}b^{3}$
A. $(a^{7})^{2}=a^{9}$
B. $a^{7}\cdot a^{2}=a^{14}$
C. $2a^{2}+3a^{3}=5a^{5}$
D. $(ab)^{3}=a^{3}b^{3}$
答案:
D
3. 计算$\left(-5\frac{1}{7}\right)^{2024}\cdot\left(\frac{7}{36}\right)^{2025}$的结果是( )。
A. $-\frac{36}{7}$
B. $\frac{36}{7}$
C. $-\frac{7}{36}$
D. $\frac{7}{36}$
A. $-\frac{36}{7}$
B. $\frac{36}{7}$
C. $-\frac{7}{36}$
D. $\frac{7}{36}$
答案:
D
4. 已学的“幂的运算”有:①同底数幂的乘法;②幂的乘方;③积的乘方。在“$(a^{2}\cdot a^{3})^{2}=(a^{2})^{2}\cdot(a^{3})^{2}=a^{4}\cdot a^{6}=a^{10}$”的运算过程中,运用了上述幂的运算中的______________(按运算顺序填序号)。
答案:
③②①
5. 计算:
(1)$\left(\frac{3}{4}x^{2}\right)^{2}$。 (2)$\left(-\frac{2}{3}mn^{3}\right)^{3}$。
(3)$-\left[\left(\frac{1}{3}a\right)^{2}\right]^{2}$。 (4)$(3\times10^{4})^{3}$。
(1)$\left(\frac{3}{4}x^{2}\right)^{2}$。 (2)$\left(-\frac{2}{3}mn^{3}\right)^{3}$。
(3)$-\left[\left(\frac{1}{3}a\right)^{2}\right]^{2}$。 (4)$(3\times10^{4})^{3}$。
答案:
(1)$\frac{9}{16}x^{4}$
(2)$-\frac{8}{27}m^{3}n^{9}$
(3)$-\frac{1}{81}a^{4}$
(4)$2.7\times10^{13}$
(1)$\frac{9}{16}x^{4}$
(2)$-\frac{8}{27}m^{3}n^{9}$
(3)$-\frac{1}{81}a^{4}$
(4)$2.7\times10^{13}$
6. 计算:
(1)$-\left(\frac{1}{10}\right)^{1000}\times(-10)^{1001}+\left(\frac{4}{15}\right)^{2025}\times\left(-3\frac{3}{4}\right)^{2026}$。 (2)$\left(8\frac{1}{7}\right)^{100}\times\left(-\frac{7}{57}\right)^{99}\times\frac{2}{19}$。
(1)$-\left(\frac{1}{10}\right)^{1000}\times(-10)^{1001}+\left(\frac{4}{15}\right)^{2025}\times\left(-3\frac{3}{4}\right)^{2026}$。 (2)$\left(8\frac{1}{7}\right)^{100}\times\left(-\frac{7}{57}\right)^{99}\times\frac{2}{19}$。
答案:
(1)原式$=-(\frac{1}{10}\times10)^{1000}\times(-10)+(\frac{4}{15}\times\frac{15}{4})^{2025}\times\frac{15}{4}=10+\frac{15}{4}=\frac{55}{4}$。
(2)原式$=-(\frac{57}{7}\times\frac{7}{57})^{99}\times\frac{57}{7}\times\frac{2}{19}=-\frac{6}{7}$。
(1)原式$=-(\frac{1}{10}\times10)^{1000}\times(-10)+(\frac{4}{15}\times\frac{15}{4})^{2025}\times\frac{15}{4}=10+\frac{15}{4}=\frac{55}{4}$。
(2)原式$=-(\frac{57}{7}\times\frac{7}{57})^{99}\times\frac{57}{7}\times\frac{2}{19}=-\frac{6}{7}$。
查看更多完整答案,请扫码查看