2025年创新设计高考总复习高三数学人教版A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习高三数学人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年创新设计高考总复习高三数学人教版A版》

第78页
例 1(2025·湛江模拟节选)已知函数 $ f(x)=\frac{1 + \ln x}{ax} $。若方程 $ f(x)=1 $ 有两个根 $ x_1,x_2 $,求实数 $ a $ 的取值范围,并证明:$ x_1x_2 > 1$
例1 解 由$\frac{1 + \ln x}{ax} = 1$,得$\frac{1 + \ln x}{x} = a$。设$g(x) = \frac{1 + \ln x}{x},x > 0$,则$g^{\prime}(x) = \frac{\frac{1}{x} \cdot x - (1 + \ln x)}{x^{2}} = \frac{- \ln x}{x^{2}}$。由$g^{\prime}(x) = 0$,得$x = 1$。当$0 < x < 1$时,$g^{\prime}(x) > 0$,则$g(x)$在$(0,1)$上单调递增;当$x > 1$时,$g^{\prime}(x) < 0$,则$g(x)$在$(1, + \infty)$上单调递减。又$g(\frac{1}{e}) = 0$,$g(1) = 1$,且当$x > 1$时,$g(x) > 0$。故$g(x) = \frac{1 + \ln x}{x}$的图象如图所示,由图知当$0 < a < 1$时,方程$\frac{1 + \ln x}{x} = a$有两个根。证明:不妨设$x_{1} < x_{2}$,则$0 < x_{1} < 1 < x_{2}$,$\frac{1 + \ln x_{1}}{x_{1}} = \frac{1 + \ln x_{2}}{x_{2}}$。设$h(x) = g(x) - g(\frac{1}{x}) = \frac{1 + \ln x}{x} - x(1 - \ln x)$,则$h^{\prime}(x) = \frac{- \ln x}{x^{2}} + \ln x = \frac{x^{2} - 1}{x^{2}}\ln x \geqslant 0$,所以$h(x)$在$(0, + \infty)$上单调递增。又$h(1) = 0$,所以$h(x_{1}) = g(x_{1}) - g(\frac{1}{x_{1}}) < 0$,即$g(x_{1}) < g(\frac{1}{x_{1}})$。又$g(x_{1}) = g(x_{2})$,所以$g(x_{2}) < g(\frac{1}{x_{1}})$。又$x_{2} > 1$,$\frac{1}{x_{1}} > 1$,$g(x)$在$(1, + \infty)$上单调递减,所以$x_{2} > \frac{1}{x_{1}}$,故$x_{1}x_{2} > 1$。
$$。
答案:
例1 解 由$\frac{1 + \ln x}{ax} = 1$,得$\frac{1 + \ln x}{x} = a$。设$g(x) = \frac{1 + \ln x}{x},x > 0$,则$g^{\prime}(x) = \frac{\frac{1}{x} \cdot x - (1 + \ln x)}{x^{2}} = \frac{- \ln x}{x^{2}}$。由$g^{\prime}(x) = 0$,得$x = 1$。当$0 < x < 1$时,$g^{\prime}(x) > 0$,则$g(x)$在$(0,1)$上单调递增;当$x > 1$时,$g^{\prime}(x) < 0$,则$g(x)$在$(1, + \infty)$上单调递减。又$g(\frac{1}{e}) = 0$,$g(1) = 1$,且当$x > 1$时,$g(x) > 0$。故$g(x) = \frac{1 + \ln x}{x}$的图象如图所示,由图知当$0 < a < 1$时,方程$\frac{1 + \ln x}{x} = a$有两个根。证明:不妨设$x_{1} < x_{2}$,则$0 < x_{1} < 1 < x_{2}$، $\frac{1 + \ln x_{1}}{x_{1}} = \frac{1 + \ln x_{2}}{x_{2}}$。设$h(x) = g(x) - g(\frac{1}{x}) = \frac{1 + \ln x}{x} - x(1 - \ln x)$,则$h^{\prime}(x) = \frac{- \ln x}{x^{2}} + \ln x = \frac{x^{2} - 1}{x^{2}}\ln x \geqslant 0$,所以$h(x)$在$(0, + \infty)$上单调递增。又$h(1) = 0$,所以$h(x_{1}) = g(x_{1}) - g(\frac{1}{x_{1}}) < 0$,即$g(x_{1}) < g(\frac{1}{x_{1}})$。又$g(x_{1}) = g(x_{2})$,所以$g(x_{2}) < g(\frac{1}{x_{1}})$。又$x_{2} > 1$,$\frac{1}{x_{1}} > 1$,$g(x)$在$(1, + \infty)$上单调递减,所以$x_{2} > \frac{1}{x_{1}}$,故$x_{1}x_{2} > 1$。
训练 1 已知函数 $ f(x)=x^2(\ln x - \frac{3}{2}) $,$ f'(x_1)=f'(x_2) $,$ x_1 < x_2 $,证明:$ x_1 + x_2 > 2$
答案: 证明$f(x) = x^{2}(\ln x - \frac{3}{2}),$$ $得$f^{\prime}(x) = x(2\ln x - 2) = 2x(\ln x - 1)。$$ $令$g(x) = 2x(\ln x - 1),$$ g^{\prime}(x) = 2\ln x,$当$x = 1$时,$g^{\prime}(x) = 0,$$ $所以函数$g(x)$在$(0,1)$上单调递减,在$(1, + \infty)$上单调递增,且$x \in (0,e)$时,$g(x) = 2x(\ln x - 1) < 0,$$ $当$x \in (e, + \infty)$时,$g(x) = 2x(\ln x - 1) > 0,$$ $故$0 < x_{1} < 1 < x_{2} < e。$$ $要证$x_{1} + x_{2} > 2,$只需证$x_{2} > 2 - x_{1},$$ $易知$x_{2} > 1,2 - x_{1} > 1,$$ $下面证明$g(x_{1}) = g(x_{2}) > g(2 - x_{1})。$$ $设$t(x) = g(2 - x) - g(x),x \in (0,1),$$ $则$t^{\prime}(x) = - g^{\prime}(2 - x) - g^{\prime}(x),$$ t^{\prime}(x) = - 2\ln(2 - x) - 2\ln x = - 2\ln[(2 - x)x] > 0,$故$t(x)$在$(0,1)$上单调递增,故$t(x) < 0,$$ $所以$g(2 - x) < g(x),$$ $则$g(2 - x_{1}) < g(x_{1}) = g(x_{2}),$$ $所以$2 - x_{1} < x_{2},$即得$x_{1} + x_{2} > 2。$$ $  

查看更多完整答案,请扫码查看

关闭