2025年创新设计高考总复习高三数学人教版A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习高三数学人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第124页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
考点一 数量积的计算
例1 (1)(2025·北京延庆区模拟)已知正方形$ABCD$的边长为$2$,点$P$满足$\overrightarrow{AP}=\frac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})$,则$\overrightarrow{AP}\cdot\overrightarrow{AC}=$ (
A.$4$
B.$5$
C.$6$
D.$8$
例1 (1)(2025·北京延庆区模拟)已知正方形$ABCD$的边长为$2$,点$P$满足$\overrightarrow{AP}=\frac{1}{2}(\overrightarrow{AC}+\overrightarrow{AD})$,则$\overrightarrow{AP}\cdot\overrightarrow{AC}=$ (
C
)A.$4$
B.$5$
C.$6$
D.$8$
答案:
例1
(1)C [
(1)以A为坐标原点,建立如图所示的平面直角坐标系,正方形ABCD的边长为2,

则A(0,0),C(2,2),D(0,2),可得$\overrightarrow{AC}$ = (2,2),$\overrightarrow{AD}$ = (0,2),点P满足$\overrightarrow{AP}$ = $\frac{1}{2}$($\overrightarrow{AC}$ + $\overrightarrow{AD}$) = (1,2),所以$\overrightarrow{AP}$.$\overrightarrow{AC}$ = 1×2 + 2×2 = 6.
例1
(1)C [
(1)以A为坐标原点,建立如图所示的平面直角坐标系,正方形ABCD的边长为2,
则A(0,0),C(2,2),D(0,2),可得$\overrightarrow{AC}$ = (2,2),$\overrightarrow{AD}$ = (0,2),点P满足$\overrightarrow{AP}$ = $\frac{1}{2}$($\overrightarrow{AC}$ + $\overrightarrow{AD}$) = (1,2),所以$\overrightarrow{AP}$.$\overrightarrow{AC}$ = 1×2 + 2×2 = 6.
(2)(2025·武汉质检)如图,$B$,$D$是以$AC$为直径的圆上的两点,其中$AB=\sqrt{t+1}$,$AD=\sqrt{t+2}$,则$\overrightarrow{AC}\cdot\overrightarrow{BD}=$ (

A.$1$
B.$2$
C.$t$
D.$2t$
A
)A.$1$
B.$2$
C.$t$
D.$2t$
答案:
(2)A [
(2)如图所示,连接BC,CD,则AD⊥CD,AB⊥BC.

所以$\overrightarrow{AB}$.$\overrightarrow{AC}$ = |$\overrightarrow{AB}$|.|$\overrightarrow{AC}$|.cos∠BAC = |$\overrightarrow{AB}$|.(|$\overrightarrow{AC}$|.cos∠BAC) = |$\overrightarrow{AB}$|² = t + 1.
$\overrightarrow{AD}$.$\overrightarrow{AC}$ = |$\overrightarrow{AD}$|.|$\overrightarrow{AC}$|cos∠CAD = |$\overrightarrow{AD}$|.(|$\overrightarrow{AC}$|.cos∠CAD) = |$\overrightarrow{AD}$|² = t + 2.
因为$\overrightarrow{BD}$ = $\overrightarrow{AD}$ - $\overrightarrow{AB}$,所以$\overrightarrow{AC}$.$\overrightarrow{BD}$ = $\overrightarrow{AC}$.$(\overrightarrow{AD}$ - $\overrightarrow{AB}$) = $\overrightarrow{AC}$.$\overrightarrow{AD}$ - $\overrightarrow{AC}$.$\overrightarrow{AB}$ = t + 2 - (t + 1) = 1.]
(2)A [
(2)如图所示,连接BC,CD,则AD⊥CD,AB⊥BC.
所以$\overrightarrow{AB}$.$\overrightarrow{AC}$ = |$\overrightarrow{AB}$|.|$\overrightarrow{AC}$|.cos∠BAC = |$\overrightarrow{AB}$|.(|$\overrightarrow{AC}$|.cos∠BAC) = |$\overrightarrow{AB}$|² = t + 1.
$\overrightarrow{AD}$.$\overrightarrow{AC}$ = |$\overrightarrow{AD}$|.|$\overrightarrow{AC}$|cos∠CAD = |$\overrightarrow{AD}$|.(|$\overrightarrow{AC}$|.cos∠CAD) = |$\overrightarrow{AD}$|² = t + 2.
因为$\overrightarrow{BD}$ = $\overrightarrow{AD}$ - $\overrightarrow{AB}$,所以$\overrightarrow{AC}$.$\overrightarrow{BD}$ = $\overrightarrow{AC}$.$(\overrightarrow{AD}$ - $\overrightarrow{AB}$) = $\overrightarrow{AC}$.$\overrightarrow{AD}$ - $\overrightarrow{AC}$.$\overrightarrow{AB}$ = t + 2 - (t + 1) = 1.]
(1)(2025·1月八省联考)已知向量$\boldsymbol{a}=(0,1)$,$\boldsymbol{b}=(1,0)$,则$\boldsymbol{a}\cdot(\boldsymbol{a}-\boldsymbol{b})=$ (
A.$2$
B.$1$
C.$0$
D.$-1$
B
)A.$2$
B.$1$
C.$0$
D.$-1$
答案:
训练1
(1)B [
(1)由已知得,$\vec{a}$.$(\vec{a}$ - $\vec{b}$) = (0,1).(-1,1) = 1.
(1)B [
(1)由已知得,$\vec{a}$.$(\vec{a}$ - $\vec{b}$) = (0,1).(-1,1) = 1.
(2)(2025·泉州调研)已知正方形$ABCD$的边长为$2$,若$\overrightarrow{BP}=\overrightarrow{PC}$,则$\overrightarrow{AP}\cdot\overrightarrow{BD}=$ (
A.$2$
B.$-2$
C.$4$
D.$-4$
B
)A.$2$
B.$-2$
C.$4$
D.$-4$
答案:
(2)B [
(2)以点A为坐标原点建立平面直角坐标系,如图所示,则B(2,0),D(0,2),C(2,2),

由$\overrightarrow{BP}$ = $\overrightarrow{PC}$可得P为BC的中点,所以P(2,1),则$\overrightarrow{AP}$ = (2,1),又$\overrightarrow{BD}$ = (-2,2),所以$\overrightarrow{AP}$.$\overrightarrow{BD}$ = 2×(-2) + 1×2 = -2.
(2)B [
(2)以点A为坐标原点建立平面直角坐标系,如图所示,则B(2,0),D(0,2),C(2,2),
由$\overrightarrow{BP}$ = $\overrightarrow{PC}$可得P为BC的中点,所以P(2,1),则$\overrightarrow{AP}$ = (2,1),又$\overrightarrow{BD}$ = (-2,2),所以$\overrightarrow{AP}$.$\overrightarrow{BD}$ = 2×(-2) + 1×2 = -2.
(3)(2025·宁波调研)已知$\triangle ABC$的外接圆圆心为$O$,$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$|\overrightarrow{OA}|=|\overrightarrow{AB}|$,则$\overrightarrow{AC}$在$\overrightarrow{BC}$上的投影向量为 (
A.$-\frac{\sqrt{3}}{4}\overrightarrow{BC}$
B.$\frac{\sqrt{3}}{4}\overrightarrow{BC}$
C.$-\frac{3}{4}\overrightarrow{BC}$
D.$\frac{3}{4}\overrightarrow{BC}$
D
)A.$-\frac{\sqrt{3}}{4}\overrightarrow{BC}$
B.$\frac{\sqrt{3}}{4}\overrightarrow{BC}$
C.$-\frac{3}{4}\overrightarrow{BC}$
D.$\frac{3}{4}\overrightarrow{BC}$
答案:
(3)D [
(3)因为$\overrightarrow{AO}$ = $\frac{1}{2}$($\overrightarrow{AB}$ + $\overrightarrow{AC}$),所以△ABC外接圆圆心O为BC的中点,即BC为外接圆的直径,如图,

又|$\overrightarrow{AB}$| = |$\overrightarrow{OA}$|,所以△ABO为等边三角形,则∠ACB = 30°,故|$\overrightarrow{AC}$| = |$\overrightarrow{BC}$|cos30°,所以向量$\overrightarrow{AC}$在向量$\overrightarrow{BC}$上的投影向量为|$\overrightarrow{AC}$|cos30°.$\frac{\overrightarrow{BC}}{\vert\overrightarrow{BC}\vert}$ = |$\overrightarrow{BC}$|.$\frac{\overrightarrow{BC}}{\vert\overrightarrow{BC}\vert}$ = $\frac{3}{4}$$\overrightarrow{BC}$.]
(3)D [
(3)因为$\overrightarrow{AO}$ = $\frac{1}{2}$($\overrightarrow{AB}$ + $\overrightarrow{AC}$),所以△ABC外接圆圆心O为BC的中点,即BC为外接圆的直径,如图,
又|$\overrightarrow{AB}$| = |$\overrightarrow{OA}$|,所以△ABO为等边三角形,则∠ACB = 30°,故|$\overrightarrow{AC}$| = |$\overrightarrow{BC}$|cos30°,所以向量$\overrightarrow{AC}$在向量$\overrightarrow{BC}$上的投影向量为|$\overrightarrow{AC}$|cos30°.$\frac{\overrightarrow{BC}}{\vert\overrightarrow{BC}\vert}$ = |$\overrightarrow{BC}$|.$\frac{\overrightarrow{BC}}{\vert\overrightarrow{BC}\vert}$ = $\frac{3}{4}$$\overrightarrow{BC}$.]
考点二 数量积的应用
角度1 夹角与垂直
例2 (1)(2024·新高考Ⅰ卷)已知向量$\boldsymbol{a}=(0,1)$,$\boldsymbol{b}=(2,x)$,若$\boldsymbol{b}\perp(\boldsymbol{b}-4\boldsymbol{a})$,则$x=$ (
A.$-2$
B.$-1$
C.$1$
D.$2$
角度1 夹角与垂直
例2 (1)(2024·新高考Ⅰ卷)已知向量$\boldsymbol{a}=(0,1)$,$\boldsymbol{b}=(2,x)$,若$\boldsymbol{b}\perp(\boldsymbol{b}-4\boldsymbol{a})$,则$x=$ (
D
)A.$-2$
B.$-1$
C.$1$
D.$2$
答案:
例2
(1)D [
(1)法一 因为$\vec{b}$⊥($\vec{b}$ - 4$\vec{a}$),所以$\vec{b}$.$(\vec{b}$ - 4$\vec{a}$) = 0,即$\vec{b}$² = 4$\vec{a}$.$\vec{b}$.因为$\vec{a}$ = (0,1),$\vec{b}$ = (2,x),所以$\vec{b}$² = 4 + x²,$\vec{a}$.$\vec{b}$ = x,得4 + x² = 4x,所以(x - 2)² = 0,解得x = 2,故选D.
法二 因为$\vec{a}$ = (0,1),$\vec{b}$ = (2,x),所以$\vec{b}$ - 4$\vec{a}$ = (2,x) - 4(0,1) = (2,x) - (0,4) = (2,x - 4).因为$\vec{b}$⊥($\vec{b}$ - 4$\vec{a}$),所以$\vec{b}$.$(\vec{b}$ - 4$\vec{a}$) = 0,所以2×2 + x(x - 4) = 0,所以(x - 2)² = 0,解得x = 2,故选D.
(1)D [
(1)法一 因为$\vec{b}$⊥($\vec{b}$ - 4$\vec{a}$),所以$\vec{b}$.$(\vec{b}$ - 4$\vec{a}$) = 0,即$\vec{b}$² = 4$\vec{a}$.$\vec{b}$.因为$\vec{a}$ = (0,1),$\vec{b}$ = (2,x),所以$\vec{b}$² = 4 + x²,$\vec{a}$.$\vec{b}$ = x,得4 + x² = 4x,所以(x - 2)² = 0,解得x = 2,故选D.
法二 因为$\vec{a}$ = (0,1),$\vec{b}$ = (2,x),所以$\vec{b}$ - 4$\vec{a}$ = (2,x) - 4(0,1) = (2,x) - (0,4) = (2,x - 4).因为$\vec{b}$⊥($\vec{b}$ - 4$\vec{a}$),所以$\vec{b}$.$(\vec{b}$ - 4$\vec{a}$) = 0,所以2×2 + x(x - 4) = 0,所以(x - 2)² = 0,解得x = 2,故选D.
(2)(2023·全国甲卷)已知向量$\boldsymbol{a}$,$\boldsymbol{b}$,$\boldsymbol{c}$满足$|\boldsymbol{a}|=|\boldsymbol{b}|=1$,$|\boldsymbol{c}|=\sqrt{2}$,且$\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=\boldsymbol{0}$,则$\cos\langle\boldsymbol{a}-\boldsymbol{c},\boldsymbol{b}-\boldsymbol{c}\rangle=$ ()
A.$-\frac{4}{5}$
B.$-\frac{2}{5}$
C.$\frac{2}{5}$
D.$\frac{4}{5}$、
A.$-\frac{4}{5}$
B.$-\frac{2}{5}$
C.$\frac{2}{5}$
D.$\frac{4}{5}$、
答案:
(2)D [
(2)因为向量|$\vec{a}$| = |$\vec{b}$| = 1,|$\vec{c}$| = $\sqrt{2}$,且$\vec{a}$ + $\vec{b}$ + $\vec{c}$ = 0,所以$\vec{c}$ = -$\vec{a}$ - $\vec{b}$,等式两边同时平方得$\vec{c}$² = $\vec{a}$² + $\vec{b}$² + 2$\vec{a}$.$\vec{b}$,即2 = 1 + 1 + 2$\vec{a}$.$\vec{b}$,解得$\vec{a}$.$\vec{b}$ = 0.
法一 $\vec{a}$ - $\vec{c}$ = $\vec{a}$ - (-$\vec{a}$ - $\vec{b}$) = 2$\vec{a}$ + $\vec{b}$,$\vec{b}$ - $\vec{c}$ = $\vec{b}$ - (-$\vec{a}$ - $\vec{b}$) = $\vec{a}$ + 2$\vec{b}$,所以($\vec{a}$ - $\vec{c}$).($\vec{b}$ - $\vec{c}$) = (2$\vec{a}$ + $\vec{b}$).($\vec{a}$ + 2$\vec{b}$) = 2$\vec{a}$² + 5$\vec{a}$.$\vec{b}$ + 2$\vec{b}$² = 4,且|$\vec{a}$ - $\vec{c}$| = |2$\vec{a}$ + $\vec{b}$| = $\sqrt{(2\vec{a}+\vec{b})^2}$ = $\sqrt{4 + 1}$ = $\sqrt{5}$,|$\vec{b}$ - $\vec{c}$| = |$\vec{a}$ + 2$\vec{b}$| = $\sqrt{(\vec{a}+2\vec{b})^2}$ = $\sqrt{1 + 4}$ = $\sqrt{5}$,所以cos〈$\vec{a}$ - $\vec{c}$,$\vec{b}$ - $\vec{c}$〉 = $\frac{(\vec{a}-\vec{c})\cdot(\vec{b}-\vec{c})}{\vert\vec{a}-\vec{c}\vert\cdot\vert\vec{b}-\vec{c}\vert}$ = $\frac{4}{5}$.
法二 如图,令向量$\vec{a}$,$\vec{b}$的起点均为O,终点分别为A,B,以$\overrightarrow{OA}$,$\overrightarrow{OB}$分别为x,y轴的正方向建立平面直角坐标系,

则$\vec{a}$ = (1,0),$\vec{b}$ = (0,1),$\vec{c}$ = -$\vec{a}$ - $\vec{b}$ = (-1,-1),所以$\vec{a}$ - $\vec{c}$ = (2,1),$\vec{b}$ - $\vec{c}$ = (1,2),则cos〈$\vec{a}$ - $\vec{c}$,$\vec{b}$ - $\vec{c}$〉 = $\frac{(\vec{a}-\vec{c})\cdot(\vec{b}-\vec{c})}{\vert\vec{a}-\vec{c}\vert\cdot\vert\vec{b}-\vec{c}\vert}$ = $\frac{2 + 2}{\sqrt{5}×\sqrt{5}}$ = $\frac{4}{5}$
(2)D [
(2)因为向量|$\vec{a}$| = |$\vec{b}$| = 1,|$\vec{c}$| = $\sqrt{2}$,且$\vec{a}$ + $\vec{b}$ + $\vec{c}$ = 0,所以$\vec{c}$ = -$\vec{a}$ - $\vec{b}$,等式两边同时平方得$\vec{c}$² = $\vec{a}$² + $\vec{b}$² + 2$\vec{a}$.$\vec{b}$,即2 = 1 + 1 + 2$\vec{a}$.$\vec{b}$,解得$\vec{a}$.$\vec{b}$ = 0.
法一 $\vec{a}$ - $\vec{c}$ = $\vec{a}$ - (-$\vec{a}$ - $\vec{b}$) = 2$\vec{a}$ + $\vec{b}$,$\vec{b}$ - $\vec{c}$ = $\vec{b}$ - (-$\vec{a}$ - $\vec{b}$) = $\vec{a}$ + 2$\vec{b}$,所以($\vec{a}$ - $\vec{c}$).($\vec{b}$ - $\vec{c}$) = (2$\vec{a}$ + $\vec{b}$).($\vec{a}$ + 2$\vec{b}$) = 2$\vec{a}$² + 5$\vec{a}$.$\vec{b}$ + 2$\vec{b}$² = 4,且|$\vec{a}$ - $\vec{c}$| = |2$\vec{a}$ + $\vec{b}$| = $\sqrt{(2\vec{a}+\vec{b})^2}$ = $\sqrt{4 + 1}$ = $\sqrt{5}$,|$\vec{b}$ - $\vec{c}$| = |$\vec{a}$ + 2$\vec{b}$| = $\sqrt{(\vec{a}+2\vec{b})^2}$ = $\sqrt{1 + 4}$ = $\sqrt{5}$,所以cos〈$\vec{a}$ - $\vec{c}$,$\vec{b}$ - $\vec{c}$〉 = $\frac{(\vec{a}-\vec{c})\cdot(\vec{b}-\vec{c})}{\vert\vec{a}-\vec{c}\vert\cdot\vert\vec{b}-\vec{c}\vert}$ = $\frac{4}{5}$.
法二 如图,令向量$\vec{a}$,$\vec{b}$的起点均为O,终点分别为A,B,以$\overrightarrow{OA}$,$\overrightarrow{OB}$分别为x,y轴的正方向建立平面直角坐标系,
则$\vec{a}$ = (1,0),$\vec{b}$ = (0,1),$\vec{c}$ = -$\vec{a}$ - $\vec{b}$ = (-1,-1),所以$\vec{a}$ - $\vec{c}$ = (2,1),$\vec{b}$ - $\vec{c}$ = (1,2),则cos〈$\vec{a}$ - $\vec{c}$,$\vec{b}$ - $\vec{c}$〉 = $\frac{(\vec{a}-\vec{c})\cdot(\vec{b}-\vec{c})}{\vert\vec{a}-\vec{c}\vert\cdot\vert\vec{b}-\vec{c}\vert}$ = $\frac{2 + 2}{\sqrt{5}×\sqrt{5}}$ = $\frac{4}{5}$
角度2 平面向量的模
例3 (2024·新高考Ⅱ卷)已知向量$\boldsymbol{a}$,$\boldsymbol{b}$满足$|\boldsymbol{a}|=1$,$|\boldsymbol{a}+2\boldsymbol{b}|=2$,且$(\boldsymbol{b}-2\boldsymbol{a})\perp\boldsymbol{b}$,则$|\boldsymbol{b}|=$ (
A.$\frac{1}{2}$
B.$\frac{\sqrt{2}}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$1$
例3 (2024·新高考Ⅱ卷)已知向量$\boldsymbol{a}$,$\boldsymbol{b}$满足$|\boldsymbol{a}|=1$,$|\boldsymbol{a}+2\boldsymbol{b}|=2$,且$(\boldsymbol{b}-2\boldsymbol{a})\perp\boldsymbol{b}$,则$|\boldsymbol{b}|=$ (
B
)A.$\frac{1}{2}$
B.$\frac{\sqrt{2}}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$1$
答案:
例3 B [由($\vec{b}$ - 2$\vec{a}$)⊥$\vec{b}$,得($\vec{b}$ - 2$\vec{a}$).$\vec{b}$ = $\vec{b}$² - 2$\vec{a}$.$\vec{b}$ = 0,所以$\vec{b}$² = 2$\vec{a}$.$\vec{b}$.将|$\vec{a}$ + 2$\vec{b}$| = 2的两边同时平方,得$\vec{a}$² + 4$\vec{a}$.$\vec{b}$ + 4$\vec{b}$² = 4,即1 + 2$\vec{b}$² + 4$\vec{b}$² = 1 + 6|$\vec{b}$|² = 4,解得|$\vec{b}$|² = $\frac{1}{2}$,所以|$\vec{b}$| = $\frac{\sqrt{2}}{2}$,故选B.]
查看更多完整答案,请扫码查看