2025年创新设计高考总复习高三数学人教版A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习高三数学人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第2页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
1. 思考辨析(在括号内打“√”或“×”)
(1) 任何一个集合都至少有两个子集。(
(2) {x | y = x2 + 1} = {y | y = x2 + 1} = {(x, y) | y = x2 + 1}。(
(3) 若1 ∈ {x2, x},则x = -1或1。(
(4) 对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立。(
(1) 任何一个集合都至少有两个子集。(
×
)(2) {x | y = x2 + 1} = {y | y = x2 + 1} = {(x, y) | y = x2 + 1}。(
×
)(3) 若1 ∈ {x2, x},则x = -1或1。(
×
)(4) 对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立。(
√
)
答案:
1.
(1)×
(2)×
(3)×
(4)√ [
(1)错误.空集只有一个子集.
(2)错误.{x|y = x² + 1}=R,{y|y = x² + 1}=[1,+∞),{(x,y)|y = x² + 1}是抛物线y = x² + 1上的点集.
(3)错误.当x = 1时,不满足集合中元素的互异性.]
(1)×
(2)×
(3)×
(4)√ [
(1)错误.空集只有一个子集.
(2)错误.{x|y = x² + 1}=R,{y|y = x² + 1}=[1,+∞),{(x,y)|y = x² + 1}是抛物线y = x² + 1上的点集.
(3)错误.当x = 1时,不满足集合中元素的互异性.]
2. (人教B必修一P9练习BT4改编)已知集合A = {x - 2,x + 5,12},且 - 3 ∈ A,则x =
-1或-8
。
答案:
2.-1或-8 [若x - 2 = -3,得x = -1,符合题意,若x + 5 = -3,得x = -8,符合题意,故x = -1或-8.]
3. (人教A必修一P13T1改编)已知U = {1,2,3,4,5,6,7},A = {2,4,5},B = {1,3,5,7},则A∩(∁UB) =
{2,4}
。
答案:
3.{2,4} [易知∁UB = {2,4,6},故A∩(∁UB)={2,4}.]
4. (苏教必修一P23T14改编)已知集合A = {x | 0 < x < a},B = {x | 1 < x < 2},若B⊆A,则实数a的取值范围是
[2,+∞)
。
答案:
4.[2,+∞) [由图可知a≥2.]
4.[2,+∞) [由图可知a≥2.]
考点一 集合的基本概念
例1 (1)(2024·南京二模)已知集合A = {1,2,4},B = {(x, y) | x ∈ A,y ∈ A,x - y ∈ A},则集合B的元素个数为
例1 (1)(2024·南京二模)已知集合A = {1,2,4},B = {(x, y) | x ∈ A,y ∈ A,x - y ∈ A},则集合B的元素个数为
2
。
答案:
(1)2 [
(1)当x = 1时,y = 1,2,4,x - y = 0,-1,-3,不符合(x - y)∈A,舍去;当x = 2时,y = 1,2,4,x - y = 1,0,-2,则x = 2,y = 1;当x = 4时,y = 1,2,4,x - y = 3,2,0,则x = 4,y = 2.故B = {(x,y)|(2,1),(4,2)},共2个元素.]
(1)2 [
(1)当x = 1时,y = 1,2,4,x - y = 0,-1,-3,不符合(x - y)∈A,舍去;当x = 2时,y = 1,2,4,x - y = 1,0,-2,则x = 2,y = 1;当x = 4时,y = 1,2,4,x - y = 3,2,0,则x = 4,y = 2.故B = {(x,y)|(2,1),(4,2)},共2个元素.]
(2) 若含有3个实数的集合既可表示成{a,$\frac{b}{a}$,1},又可表示成{a2,a + b,0},则a2026 + b2026 =
1
。
答案:
(2)1 [
(2)因为{a,$\frac{b}{a}$,1} = {a²,a + b,0},显然a≠0,所以$\frac{b}{a}$=0,即b = 0;此时两集合分别是{a,1,0},{a,a²,0},则a² = 1,解得a = 1或a = -1.当a = 1时,不满足互异性,故舍去;当a = -1时,满足题意.所以a²⁰²⁶ + b²⁰²⁶ = (-1)²⁰²⁶ + 0²⁰²⁶ = 1.]
(2)1 [
(2)因为{a,$\frac{b}{a}$,1} = {a²,a + b,0},显然a≠0,所以$\frac{b}{a}$=0,即b = 0;此时两集合分别是{a,1,0},{a,a²,0},则a² = 1,解得a = 1或a = -1.当a = 1时,不满足互异性,故舍去;当a = -1时,满足题意.所以a²⁰²⁶ + b²⁰²⁶ = (-1)²⁰²⁶ + 0²⁰²⁶ = 1.]
(1)(2025·银川、昆明联考)已知集合A = {-1,0,1},B = {x | x = mn,m ∈ A,n ∈ A},则集合B的真子集个数是(
A.4
B.7
C.8
D.15
B
)A.4
B.7
C.8
D.15
答案:
(1)B [
(1)由题意得B = {x|x = mn,m∈A,n∈A}={-1,0,1},故集合B的真子集个数为2³ - 1 = 7.]
(1)B [
(1)由题意得B = {x|x = mn,m∈A,n∈A}={-1,0,1},故集合B的真子集个数为2³ - 1 = 7.]
(2)(2025·北京西城区调研)已知集合A = {x | |x - 1| < 3},B = {x | x2 - 3x - 10 < 0},若a ∉ A,且a ∈ B,则a的取值范围是(
A.(-2,4)
B.(4,5)
C.[4,5]
D.[4,5)
D
)A.(-2,4)
B.(4,5)
C.[4,5]
D.[4,5)
答案:
(2)D [
(2)由|x - 1| < 3,可得-2 < x < 4,所以A = {x|-2 < x < 4}.由x² - 3x - 10 < 0,可得-2 < x < 5,所以B = {x|-2 < x < 5}.若a∉A,且a∈B,则有a∈∁BA = [4,5).]
(2)D [
(2)由|x - 1| < 3,可得-2 < x < 4,所以A = {x|-2 < x < 4}.由x² - 3x - 10 < 0,可得-2 < x < 5,所以B = {x|-2 < x < 5}.若a∉A,且a∈B,则有a∈∁BA = [4,5).]
考点二 集合间的基本关系
例2 (1)(2024·江门联考)设M = {x | x = 4k - 3,k ∈ Z},N = {x | x = 2k - 1,k ∈ Z},则(
A.M⊆N
B.N⊆M
C.M = N
D.M∩N = ∅
例2 (1)(2024·江门联考)设M = {x | x = 4k - 3,k ∈ Z},N = {x | x = 2k - 1,k ∈ Z},则(
A
)A.M⊆N
B.N⊆M
C.M = N
D.M∩N = ∅
答案:
(1)A [
(1)因为M = {x|x = 4k - 3,k∈Z} = {x|x = 2(2k - 1) - 1,k∈Z},N = {x|x = 2k - 1,k∈Z},所以M⊆N.故选A.]
(1)A [
(1)因为M = {x|x = 4k - 3,k∈Z} = {x|x = 2(2k - 1) - 1,k∈Z},N = {x|x = 2k - 1,k∈Z},所以M⊆N.故选A.]
(2)(2025·大连模拟)设集合A = {x | x - 5 = 0},B = {x | ax - 1 = 0},若A∩B = B,则实数a的值为______。
答案:
(2)0或$\frac{1}{5}$ [
(2)因为A = {x|x - 5 = 0} = {5},又A∩B = B,所以B⊆A.当B = ∅时,a = 0,符合题意;当B = {5}时,5a - 1 = 0,解得a = $\frac{1}{5}$.综上可得,a = 0或a = $\frac{1}{5}$.
(2)0或$\frac{1}{5}$ [
(2)因为A = {x|x - 5 = 0} = {5},又A∩B = B,所以B⊆A.当B = ∅时,a = 0,符合题意;当B = {5}时,5a - 1 = 0,解得a = $\frac{1}{5}$.综上可得,a = 0或a = $\frac{1}{5}$.
(1)(2025·北京人大附中检测)已知集合U = {-1,0,1,2},A = {-1,0,1},B = {0,1,2},则{-1}⊆(
A.∁UA
B.∁UB
C.(∁UA)∩B
D.∁U(A∪B)
B
)A.∁UA
B.∁UB
C.(∁UA)∩B
D.∁U(A∪B)
答案:
(1)B
(1)对于A,∁UA = {2},故A错误;对于B,∁UB = {-1},所以{-1}⊆∁UB,故B正确;对于C,(∁UA)∩B = {2},故C错误;对于D,∁U(A∪B) = ∅,故D错误.]
(1)B
(1)对于A,∁UA = {2},故A错误;对于B,∁UB = {-1},所以{-1}⊆∁UB,故B正确;对于C,(∁UA)∩B = {2},故C错误;对于D,∁U(A∪B) = ∅,故D错误.]
(2) 设集合A = {x | -1 ≤ x + 1 ≤ 6},B = {x | m - 1 < x < 2m + 1},当x ∈ Z时,集合A的非空真子集的个数为
254
;当B⊆A时,实数m的取值范围是{m|m≤ -2或-1≤m≤2}
。
答案:
(2)254 {m|m≤ -2或-1≤m≤2}
(2)易得A = {x|-2≤x≤5}.若x∈Z,则A = {-2,-1,0,1,2,3,4,5},即A中含有8个元素,所以A的非空真子集的个数为2⁸ - 2 = 254.①当m - 1≥2m + 1,即m≤ -2时,B = ∅,满足B⊆A;②当m - 1<2m + 1,即m > -2时,要使B⊆A,则需$\begin{cases}m - 1≥ -2\\2m + 1≤5\end{cases}$,解得-1≤m≤2.综上所述,m的取值范围是{m|m≤ -2或-1≤m≤2}.]
(2)254 {m|m≤ -2或-1≤m≤2}
(2)易得A = {x|-2≤x≤5}.若x∈Z,则A = {-2,-1,0,1,2,3,4,5},即A中含有8个元素,所以A的非空真子集的个数为2⁸ - 2 = 254.①当m - 1≥2m + 1,即m≤ -2时,B = ∅,满足B⊆A;②当m - 1<2m + 1,即m > -2时,要使B⊆A,则需$\begin{cases}m - 1≥ -2\\2m + 1≤5\end{cases}$,解得-1≤m≤2.综上所述,m的取值范围是{m|m≤ -2或-1≤m≤2}.]
查看更多完整答案,请扫码查看