2025年创新设计高考总复习高三数学人教版A版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习高三数学人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年创新设计高考总复习高三数学人教版A版》

第90页
1. 同角三角函数的基本关系
(1)平方关系:
\sin^{2}\alpha+\cos^{2}\alpha = 1

(2)商数关系:$\frac{\sin\alpha}{\cos\alpha}=\tan\alpha\left(\alpha\neq\frac{\pi}{2}+k\pi,k\in\mathbf{Z}\right)$。
答案: $1.(1)\sin^{2}\alpha+\cos^{2}\alpha = 1$
2. 三角函数的诱导公式
答案: $2.-\sin\alpha -\sin\alpha \sin\alpha \cos\alpha \cos\alpha -\cos\alpha$
$-\cos\alpha -\cos\alpha \sin\alpha -\sin\alpha \tan\alpha$
$-\tan\alpha -\tan\alpha$
1. 思考辨析(在括号内打“√”或“×”)
(1)若$\alpha$,$\beta$为锐角,则$\sin^{2}\alpha+\cos^{2}\beta = 1$。(
×
)
(2)$\sin(\pi+\alpha)=-\sin\alpha$成立的条件是$\alpha$为锐角。(
×
)
(3)若$\alpha\in\mathbf{R}$,则$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}$恒成立。(
×
)
(4)若$\sin(k\pi-\alpha)=\frac{1}{3}(k\in\mathbf{Z})$,则$\sin\alpha=\frac{1}{3}$。(
×
)
答案: 1.
(1)×
(2)×
(3)×
(4)×
[
(1)对任意的角$\alpha,\sin^{2}\alpha+\cos^{2}\alpha = 1.$
(2)中对于任意$\alpha\in\mathbf{R},$恒有$\sin(\pi+\alpha)=-\sin\alpha.$
(3)中当$\alpha$的终边落在y轴上时,商数关系不成立.
(4)当k为奇数时,$\sin\alpha=\frac{1}{3},$
当k为偶数时,$\sin\alpha = -\frac{1}{3}.]$
2. (湘教必修一P168例5改编)已知$\alpha$是第三象限角,$\sin\alpha=-\frac{3}{5}$,则$\tan\alpha=$(
B
)

A.$-\frac{3}{4}$
B.$\frac{3}{4}$
C.$-\frac{4}{3}$
D.$\frac{4}{3}$
答案: 2.B[由题意得$\cos\alpha = -\frac{4}{5},$
故$\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{3}{4}.]$
3. (人教A必修一P195T5改编)已知$\sin\left(\frac{7\pi}{2}+\alpha\right)=\frac{3}{5}$,那么$\cos\alpha=$(
B
)

A.$-\frac{4}{5}$
B.$-\frac{3}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案: 3.B[因为$\sin(\frac{7\pi}{2}+\alpha)=-\cos\alpha = -\frac{3}{5},$
所以$\cos\alpha = -\frac{3}{5}.$
4. (北师大必修二P24例8(3)改编)求值:$\sin\frac{5\pi}{6}\cos\left(-\frac{\pi}{4}\right)+\sin\frac{11\pi}{6}\cos\frac{5\pi}{4}=$
\frac{\sqrt{2}}{2}
答案: $4.\frac{\sqrt{2}}{2}[\sin\frac{5\pi}{6}\cos(-\frac{\pi}{4})+\sin\frac{11\pi}{6}\cos\frac{5\pi}{4}$
$=\sin(-\frac{\pi}{6}+\pi)\cos\frac{\pi}{4}+\sin(-\frac{\pi}{6}+2\pi).$
$\cos(\frac{\pi}{4}+\pi)$
$=\sin\frac{\pi}{6}\cos\frac{\pi}{4}+(-\sin\frac{\pi}{6})(-\cos\frac{\pi}{4})$
$=2×\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}.]$
例1 (1)(2025·济南质检)若$\frac{2\sin\theta-\cos\theta}{\sin\theta+2\cos\theta}=\frac{1}{2}$,则$\frac{\cos\theta(1 - 2\sin^{2}\theta)}{\sin\theta+\cos\theta}=$(
C
)

A.$-\frac{4}{25}$
B.$\frac{4}{25}$
C.$-\frac{3}{25}$
D.$\frac{3}{25}$
答案: 例$1(1)C(2)-\frac{\sqrt{5}}{5}[(1)\because\frac{2\sin\theta - \cos\theta}{\sin\theta + 2\cos\theta}=\frac{1}{2},$
$\therefore\frac{2\tan\theta - 1}{\tan\theta + 2}=\frac{1}{2},$
$\therefore\tan\theta=\frac{4}{3},$
则$\frac{\cos\theta(1 - 2\sin^{2}\theta)}{\sin\theta+\cos\theta}=\frac{1 - 2\sin^{2}\theta}{\tan\theta + 1}$
$=\frac{1 - 2×\frac{\sin^{2}\theta}{\sin^{2}\theta+\cos^{2}\theta}}{\tan\theta + 1}=\frac{1 - 2×\frac{\tan^{2}\theta}{\tan^{2}\theta + 1}}{\tan\theta + 1}$
$=\frac{(1 - \tan^{2}\theta)(1+\tan^{2}\theta)}{1 - \tan^{2}\theta}$
$=(\frac{\frac{4}{3}+1}{\frac{16}{9}+1})×\frac{3}{25}.$
(2)由$\begin{cases}\tan\theta=\frac{\sin\theta}{\cos\theta}=-\frac{1}{2}\\\sin^{2}\theta+\cos^{2}\theta = 1,\end{cases}$且$\theta\in(0,\frac{\pi}{2}),$
解得$\begin{cases}\sin\theta=\frac{\sqrt{5}}{5}\\\cos\theta=\frac{2\sqrt{5}}{5}\end{cases},$故$\sin\theta - \cos\theta=-\frac{\sqrt{5}}{5}.]$
(2)(2023·全国乙卷)若$\theta\in\left(0,\frac{\pi}{2}\right)$,$\tan\theta=\frac{1}{2}$,则$\sin\theta-\cos\theta=$
-\frac{\sqrt{5}}{5}
答案: $(2)-\frac{\sqrt{5}}{5}[(2)$由$\begin{cases}\tan\theta=\frac{\sin\theta}{\cos\theta}=-\frac{1}{2}\\\sin^{2}\theta+\cos^{2}\theta = 1,\end{cases}$且$\theta\in(0,\frac{\pi}{2}),$解得$\begin{cases}\sin\theta=\frac{\sqrt{5}}{5}\\\cos\theta=\frac{2\sqrt{5}}{5}\end{cases},$故$\sin\theta - \cos\theta=-\frac{\sqrt{5}}{5}.]$

查看更多完整答案,请扫码查看

关闭