2025年创新设计高考总复习高三数学人教版A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年创新设计高考总复习高三数学人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第91页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
角度2 “和”“积”转换
例2 (多选)已知$\theta\in(0,\pi)$,$\sin\theta+\cos\theta=\frac{1}{5}$,则下列结论正确的是(
A.$\sin\theta=\frac{4}{5}$
B.$\cos\theta=-\frac{3}{5}$
C.$\tan\theta=-\frac{3}{4}$
D.$\sin\theta-\cos\theta=\frac{7}{5}$
例2 (多选)已知$\theta\in(0,\pi)$,$\sin\theta+\cos\theta=\frac{1}{5}$,则下列结论正确的是(
ABD
)A.$\sin\theta=\frac{4}{5}$
B.$\cos\theta=-\frac{3}{5}$
C.$\tan\theta=-\frac{3}{4}$
D.$\sin\theta-\cos\theta=\frac{7}{5}$
答案:
例2ABD[由题意知$\sin\theta+\cos\theta=\frac{1}{5},$
$\therefore(\sin\theta+\cos\theta)^{2}=1 + 2\sin\theta\cos\theta=\frac{1}{25},$
$\therefore2\sin\theta\cos\theta=-\frac{24}{25}<0,$
又$\because\theta\in(0,\pi),$$\therefore\frac{\pi}{2}<\theta<\pi,$
$\therefore\sin\theta - \cos\theta>0,$
$\therefore\sin\theta - \cos\theta=\sqrt{1 - 2\sin\theta\cos\theta}$
$=\sqrt{1-(-\frac{24}{25})}=\sqrt{\frac{49}{25}}=\frac{7}{5},$
$\therefore\sin\theta=\frac{4}{5},\cos\theta=-\frac{3}{5}.$
$\therefore\tan\theta=-\frac{4}{3},\thereforeA,B,D$正确.]
$\therefore(\sin\theta+\cos\theta)^{2}=1 + 2\sin\theta\cos\theta=\frac{1}{25},$
$\therefore2\sin\theta\cos\theta=-\frac{24}{25}<0,$
又$\because\theta\in(0,\pi),$$\therefore\frac{\pi}{2}<\theta<\pi,$
$\therefore\sin\theta - \cos\theta>0,$
$\therefore\sin\theta - \cos\theta=\sqrt{1 - 2\sin\theta\cos\theta}$
$=\sqrt{1-(-\frac{24}{25})}=\sqrt{\frac{49}{25}}=\frac{7}{5},$
$\therefore\sin\theta=\frac{4}{5},\cos\theta=-\frac{3}{5}.$
$\therefore\tan\theta=-\frac{4}{3},\thereforeA,B,D$正确.]
(1)已知$x\in\left(-\frac{\pi}{2},0\right)$,$\sin^{4}x+\cos^{4}x=\frac{1}{2}$,则$\sin x-\cos x=$(
A.$\sqrt{2}$
B.$-\sqrt{2}$
C.$\frac{\sqrt{2}}{2}$
D.$-\frac{\sqrt{2}}{2}$
B
)A.$\sqrt{2}$
B.$-\sqrt{2}$
C.$\frac{\sqrt{2}}{2}$
D.$-\frac{\sqrt{2}}{2}$
答案:
训练$1(1)B(2)\frac{\sqrt{5}+1}{2}[(1)$因为$\sin^{4}x+\cos^{4}x$
$=(\sin^{2}x+\cos^{2}x)^{2}-2\sin^{2}x\cos^{2}x$
$=1 - 2\sin^{2}x\cos^{2}x=\frac{1}{2},$
所以$\sin^{2}x\cos^{2}x=\frac{1}{4},$
又$x\in(-\frac{\pi}{2},0),$
所以$\sin x$<0,\cos x>$0,\sin x - \cos x<0,$
所以$\sin x\cos x=-\frac{1}{2},$
$\sin x - \cos x=-\sqrt{(\sin x - \cos x)^{2}}$
$=-\sqrt{1 - 2\sin x\cos x}$
$=-\sqrt{1-2×(-\frac{1}{2})}=-\sqrt{2}.$
(2)因为$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{1 - \sin2\theta},$
所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{(\sin\theta - \cos\theta)^{2}},$
所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{1}{\sin\theta - \cos\theta},$
即$\sin^{2}\theta - \sin\theta\cos\theta - \cos^{2}\theta = 0,$
因为$\theta\in(0,\frac{\pi}{2}),$所以$\cos\theta\neq0,\tan\theta>0,$
所以$\tan^{2}\theta - \tan\theta - 1 = 0,$
得$\tan\theta=\frac{\sqrt{5}+1}{2}.]$
$=(\sin^{2}x+\cos^{2}x)^{2}-2\sin^{2}x\cos^{2}x$
$=1 - 2\sin^{2}x\cos^{2}x=\frac{1}{2},$
所以$\sin^{2}x\cos^{2}x=\frac{1}{4},$
又$x\in(-\frac{\pi}{2},0),$
所以$\sin x$<0,\cos x>$0,\sin x - \cos x<0,$
所以$\sin x\cos x=-\frac{1}{2},$
$\sin x - \cos x=-\sqrt{(\sin x - \cos x)^{2}}$
$=-\sqrt{1 - 2\sin x\cos x}$
$=-\sqrt{1-2×(-\frac{1}{2})}=-\sqrt{2}.$
(2)因为$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{1 - \sin2\theta},$
所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{(\sin\theta - \cos\theta)^{2}},$
所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{1}{\sin\theta - \cos\theta},$
即$\sin^{2}\theta - \sin\theta\cos\theta - \cos^{2}\theta = 0,$
因为$\theta\in(0,\frac{\pi}{2}),$所以$\cos\theta\neq0,\tan\theta>0,$
所以$\tan^{2}\theta - \tan\theta - 1 = 0,$
得$\tan\theta=\frac{\sqrt{5}+1}{2}.]$
(2)(2025·徐州调研)若$\theta\in\left(0,\frac{\pi}{2}\right)$,$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta-\cos\theta}{1-\sin2\theta}$,则$\tan\theta=$
\frac{\sqrt{5}+1}{2}
。
答案:
$(2)\frac{\sqrt{5}+1}{2}[(2)$因为$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{1 - \sin2\theta},$所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{\sin\theta - \cos\theta}{(\sin\theta - \cos\theta)^{2}},$所以$\frac{\sin\theta}{\cos^{2}\theta}=\frac{1}{\sin\theta - \cos\theta},$即$\sin^{2}\theta - \sin\theta\cos\theta - \cos^{2}\theta = 0,$因为$\theta\in(0,\frac{\pi}{2}),$所以$\cos\theta\neq0,\tan\theta>0,$所以$\tan^{2}\theta - \tan\theta - 1 = 0,$得$\tan\theta=\frac{\sqrt{5}+1}{2}.]$
例3 (1)已知$\cos\left(\frac{\pi}{6}-\theta\right)=a(|a|\leqslant1)$,则$\cos\left(\frac{5\pi}{6}+\theta\right)+\sin\left(\frac{2\pi}{3}-\theta\right)=$
0
。
答案:
例$3(1)0(2)\sin40^{\circ}[(1)$由题知
$\cos(\frac{5\pi}{6}+\theta)=\cos[\pi-(\frac{\pi}{6}-\theta)]$
$=-\cos(\frac{\pi}{6}-\theta)=-a,$
$\sin(\frac{2\pi}{3}-\theta)=\sin[\frac{\pi}{2}+(\frac{\pi}{6}-\theta)]$
$=\cos(\frac{\pi}{6}-\theta)=a,$
$\therefore\cos(\frac{5\pi}{6}+\theta)+\sin(\frac{2\pi}{3}-\theta)=0.$
$(2)\frac{\sin400^{\circ}\sin230^{\circ}}{\cos850^{\circ}\tan50^{\circ}}$
$=\frac{\sin(360^{\circ}+40^{\circ})\sin(180^{\circ}+50^{\circ})}{\cos(2×360^{\circ}+130^{\circ})\tan50^{\circ}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}-\sin40^{\circ}\sin(180^{\circ}-50^{\circ})}{\cos130^{\circ}\tan50^{\circ}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}}{\cos(180^{\circ}-50^{\circ})\frac{\sin50^{\circ}}{\cos50^{\circ}}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}}{-\cos50^{\circ}}×\frac{\cos50^{\circ}}{\sin50^{\circ}}=\sin40^{\circ}.]$
$\cos(\frac{5\pi}{6}+\theta)=\cos[\pi-(\frac{\pi}{6}-\theta)]$
$=-\cos(\frac{\pi}{6}-\theta)=-a,$
$\sin(\frac{2\pi}{3}-\theta)=\sin[\frac{\pi}{2}+(\frac{\pi}{6}-\theta)]$
$=\cos(\frac{\pi}{6}-\theta)=a,$
$\therefore\cos(\frac{5\pi}{6}+\theta)+\sin(\frac{2\pi}{3}-\theta)=0.$
$(2)\frac{\sin400^{\circ}\sin230^{\circ}}{\cos850^{\circ}\tan50^{\circ}}$
$=\frac{\sin(360^{\circ}+40^{\circ})\sin(180^{\circ}+50^{\circ})}{\cos(2×360^{\circ}+130^{\circ})\tan50^{\circ}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}-\sin40^{\circ}\sin(180^{\circ}-50^{\circ})}{\cos130^{\circ}\tan50^{\circ}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}}{\cos(180^{\circ}-50^{\circ})\frac{\sin50^{\circ}}{\cos50^{\circ}}}$
$=\frac{-\sin40^{\circ}\sin50^{\circ}}{-\cos50^{\circ}}×\frac{\cos50^{\circ}}{\sin50^{\circ}}=\sin40^{\circ}.]$
(2)化简:$\frac{\sin400^{\circ}\sin230^{\circ}}{\cos850^{\circ}\tan50^{\circ}}=$
\sin40^{\circ}
。
答案:
$(2)\sin40^{\circ}[(2)\frac{\sin400^{\circ}\sin230^{\circ}}{\cos850^{\circ}\tan50^{\circ}}=\frac{\sin(360^{\circ}+40^{\circ})\sin(180^{\circ}+50^{\circ})}{\cos(2×360^{\circ}+130^{\circ})\tan50^{\circ}}=\frac{-\sin40^{\circ}\sin50^{\circ}-\sin40^{\circ}\sin(180^{\circ}-50^{\circ})}{\cos130^{\circ}\tan50^{\circ}}=\frac{-\sin40^{\circ}\sin50^{\circ}}{\cos(180^{\circ}-50^{\circ})\frac{\sin50^{\circ}}{\cos50^{\circ}}}=\frac{-\sin40^{\circ}\sin50^{\circ}}{-\cos50^{\circ}}×\frac{\cos50^{\circ}}{\sin50^{\circ}}=\sin40^{\circ}.]$
(1)已知$\alpha\in\mathbf{R}$,则下列等式恒成立的是(
A.$\sin(3\pi-\alpha)=-\sin\alpha$
B.$\sin\frac{\pi-\alpha}{2}=-\cos\frac{\alpha}{2}$
C.$\cos\left(\frac{5\pi}{2}+3\alpha\right)=\sin3\alpha$
D.$\cos\left(\frac{3\pi}{2}-2\alpha\right)=-\sin2\alpha$
D
)A.$\sin(3\pi-\alpha)=-\sin\alpha$
B.$\sin\frac{\pi-\alpha}{2}=-\cos\frac{\alpha}{2}$
C.$\cos\left(\frac{5\pi}{2}+3\alpha\right)=\sin3\alpha$
D.$\cos\left(\frac{3\pi}{2}-2\alpha\right)=-\sin2\alpha$
答案:
训练$2(1)D[(1)\sin(3\pi-\alpha)$
$=\sin(\pi-\alpha)=\sin\alpha,$
$\sin\frac{\pi - \alpha}{2}=\sin(\frac{\pi}{2}-\frac{\alpha}{2})=\cos\frac{\alpha}{2},$
$\cos(\frac{5\pi}{2}+3\alpha)=\cos(\frac{\pi}{2}+3\alpha)=-\sin3\alpha,$
$\cos(\frac{3\pi}{2}-2\alpha)=-\sin2\alpha.]$
$=\sin(\pi-\alpha)=\sin\alpha,$
$\sin\frac{\pi - \alpha}{2}=\sin(\frac{\pi}{2}-\frac{\alpha}{2})=\cos\frac{\alpha}{2},$
$\cos(\frac{5\pi}{2}+3\alpha)=\cos(\frac{\pi}{2}+3\alpha)=-\sin3\alpha,$
$\cos(\frac{3\pi}{2}-2\alpha)=-\sin2\alpha.]$
(2)求值:$\tan780^{\circ}\cos(-1140^{\circ})-\sin1560^{\circ}\cdot\cos(-1050^{\circ})=$________。
答案:
训练$2(2)\frac{2\sqrt{3}-3}{4}[(2)$原式$=\tan(2×360^{\circ}+60^{\circ})\cos(-3×360^{\circ}-60^{\circ})-\sin(4×360^{\circ}+40^{\circ})\cos(-3×360^{\circ}+30^{\circ})$
$=\tan60^{\circ}\cos(-60^{\circ})-\sin40^{\circ}\cos30^{\circ}$
$=\sqrt{3}×\frac{1}{2}-\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{2\sqrt{3}-3}{4}.]$
$=\tan60^{\circ}\cos(-60^{\circ})-\sin40^{\circ}\cos30^{\circ}$
$=\sqrt{3}×\frac{1}{2}-\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{2\sqrt{3}-3}{4}.]$
例4 已知$f(\alpha)=\frac{\sin\left(\frac{\pi}{2}+\alpha\right)\cos(\pi+\alpha)\sin(-\alpha)}{\sin\left(\frac{3\pi}{2}-\alpha\right)\cos(2\pi-\alpha)\tan(\pi-\alpha)}$。
(1)化简$f(\alpha)$;
(2)若$f\left(\frac{\pi}{3}-\alpha\right)=\frac{1}{3}$,求$\cos^{2}\left(\frac{\pi}{6}+\alpha\right)+\cos\left(\frac{2\pi}{3}+\alpha\right)$的值。
(1)化简$f(\alpha)$;
(2)若$f\left(\frac{\pi}{3}-\alpha\right)=\frac{1}{3}$,求$\cos^{2}\left(\frac{\pi}{6}+\alpha\right)+\cos\left(\frac{2\pi}{3}+\alpha\right)$的值。
答案:
例4解
(1)由题意得,
$f(\alpha)=\frac{\cos\alpha\cdot(-\cos\alpha)\cdot(-\sin\alpha)}{-\cos\alpha\cdot\cos\alpha\cdot(-\tan\alpha)}=\cos\alpha.$
$(2)f(\frac{\pi}{3}-\alpha)=\frac{1}{3},$即$\cos(\frac{\pi}{3}-\alpha)=\frac{1}{3}$
$\therefore\cos^{2}(\frac{\pi}{6}+\alpha)=\cos^{2}[\frac{\pi}{2}-(\frac{\pi}{3}-\alpha)]$
$=\sin^{2}(\frac{\pi}{3}-\alpha)=1-\cos^{2}(\frac{\pi}{3}-\alpha)$
$=1-\frac{1}{9}=\frac{8}{9},$
$\cos(\frac{2\pi}{3}+\alpha)=\cos[\pi-(\frac{\pi}{3}-\alpha)]$
$=-\cos(\frac{\pi}{3}-\alpha)=-\frac{1}{3},$
$\therefore\cos^{2}(\frac{\pi}{6}+\alpha)+\cos(\frac{2\pi}{3}+\alpha)$
$=\frac{8}{9}-\frac{1}{3}=\frac{5}{9}.$
(1)由题意得,
$f(\alpha)=\frac{\cos\alpha\cdot(-\cos\alpha)\cdot(-\sin\alpha)}{-\cos\alpha\cdot\cos\alpha\cdot(-\tan\alpha)}=\cos\alpha.$
$(2)f(\frac{\pi}{3}-\alpha)=\frac{1}{3},$即$\cos(\frac{\pi}{3}-\alpha)=\frac{1}{3}$
$\therefore\cos^{2}(\frac{\pi}{6}+\alpha)=\cos^{2}[\frac{\pi}{2}-(\frac{\pi}{3}-\alpha)]$
$=\sin^{2}(\frac{\pi}{3}-\alpha)=1-\cos^{2}(\frac{\pi}{3}-\alpha)$
$=1-\frac{1}{9}=\frac{8}{9},$
$\cos(\frac{2\pi}{3}+\alpha)=\cos[\pi-(\frac{\pi}{3}-\alpha)]$
$=-\cos(\frac{\pi}{3}-\alpha)=-\frac{1}{3},$
$\therefore\cos^{2}(\frac{\pi}{6}+\alpha)+\cos(\frac{2\pi}{3}+\alpha)$
$=\frac{8}{9}-\frac{1}{3}=\frac{5}{9}.$
(1)(2025·丽水模拟)已知$\sin\left(\frac{2\pi}{7}+\alpha\right)=\frac{1}{5}$,那么$\tan\left(\frac{3\pi}{14}-\alpha\right)=$(
A.$-\frac{1}{5}$
B.$\pm2\sqrt{6}$
C.$\frac{2\sqrt{6}}{5}$
D.$2\sqrt{6}$
B
)A.$-\frac{1}{5}$
B.$\pm2\sqrt{6}$
C.$\frac{2\sqrt{6}}{5}$
D.$2\sqrt{6}$
答案:
训练3
(1)B
(2)D[
(1)因为$\sin(\frac{2\pi}{7}+\alpha)=\frac{1}{5},$所以$\cos(\frac{3\pi}{14}-\alpha)$
$=\cos[\frac{\pi}{2}-(\frac{2\pi}{7}+\alpha)]$
$=\sin(\frac{2\pi}{7}+\alpha)=\frac{1}{5},$
则$\sin(\frac{3\pi}{14}-\alpha)=\pm\sqrt{1-\cos^{2}(\frac{3\pi}{14}-\alpha)}$
$=\pm\frac{2\sqrt{6}}{5}$
所以$\tan(\frac{3\pi}{14}-\alpha)=\frac{\sin(\frac{3\pi}{14}-\alpha)}{\cos(\frac{3\pi}{14}-\alpha)}=\pm2\sqrt{6}.$
答案解析与规律方法:549
(2)由诱导公式可得$\sin\alpha=\sin(\frac{3\pi}{2}-\alpha)+$
$\cos(\pi-\alpha)=-2\cos\alpha,$所以$\tan\alpha=-2.$
因此,$2\sin^{2}\alpha-\sin\alpha\cos\alpha=\frac{2\sin^{2}\alpha-\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}$
$=\frac{2\tan^{2}\alpha-\tan\alpha}{\tan^{2}\alpha + 1}=\frac{10}{5}=2.]$
(1)B
(2)D[
(1)因为$\sin(\frac{2\pi}{7}+\alpha)=\frac{1}{5},$所以$\cos(\frac{3\pi}{14}-\alpha)$
$=\cos[\frac{\pi}{2}-(\frac{2\pi}{7}+\alpha)]$
$=\sin(\frac{2\pi}{7}+\alpha)=\frac{1}{5},$
则$\sin(\frac{3\pi}{14}-\alpha)=\pm\sqrt{1-\cos^{2}(\frac{3\pi}{14}-\alpha)}$
$=\pm\frac{2\sqrt{6}}{5}$
所以$\tan(\frac{3\pi}{14}-\alpha)=\frac{\sin(\frac{3\pi}{14}-\alpha)}{\cos(\frac{3\pi}{14}-\alpha)}=\pm2\sqrt{6}.$
答案解析与规律方法:549
(2)由诱导公式可得$\sin\alpha=\sin(\frac{3\pi}{2}-\alpha)+$
$\cos(\pi-\alpha)=-2\cos\alpha,$所以$\tan\alpha=-2.$
因此,$2\sin^{2}\alpha-\sin\alpha\cos\alpha=\frac{2\sin^{2}\alpha-\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}$
$=\frac{2\tan^{2}\alpha-\tan\alpha}{\tan^{2}\alpha + 1}=\frac{10}{5}=2.]$
(2)(2024·衡水模拟)已知$\sin\left(\frac{3\pi}{2}-\alpha\right)+\cos(\pi-\alpha)=\sin\alpha$,则$2\sin^{2}\alpha-\sin\alpha\cos\alpha=$(
A.$\frac{21}{10}$
B.$\frac{3}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$2$
D
)A.$\frac{21}{10}$
B.$\frac{3}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$2$
答案:
(2)D[
(2)由诱导公式可得$\sin\alpha=\sin(\frac{3\pi}{2}-\alpha)+\cos(\pi-\alpha)=-2\cos\alpha,$所以$\tan\alpha=-2.$因此,$2\sin^{2}\alpha-\sin\alpha\cos\alpha=\frac{2\sin^{2}\alpha-\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=\frac{2\tan^{2}\alpha-\tan\alpha}{\tan^{2}\alpha + 1}=\frac{10}{5}=2.]$
(2)D[
(2)由诱导公式可得$\sin\alpha=\sin(\frac{3\pi}{2}-\alpha)+\cos(\pi-\alpha)=-2\cos\alpha,$所以$\tan\alpha=-2.$因此,$2\sin^{2}\alpha-\sin\alpha\cos\alpha=\frac{2\sin^{2}\alpha-\sin\alpha\cos\alpha}{\sin^{2}\alpha+\cos^{2}\alpha}=\frac{2\tan^{2}\alpha-\tan\alpha}{\tan^{2}\alpha + 1}=\frac{10}{5}=2.]$
查看更多完整答案,请扫码查看