第49页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
1. 已知有 4 组三角形的边长:①$a = 5$,$b = 12$,$c = 13$;②$a = 2$,$b = 3$,$c = 4$;③$a = 2.5$,$b = 6$,$c = 6.5$;④$a = 21$,$b = 20$,$c = 29$.其中组成的三角形是直角三角形的有 (
A.4 组
B.3 组
C.2 组
D.1 组
B
)A.4 组
B.3 组
C.2 组
D.1 组
答案:
B
2. 新趋势 传统文化 我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(丈、尺是长度单位,1 丈$ = 10$尺)其大意如下:如图,有一个水池,水面是一个边长为 10 尺的正方形,在水池正中央有一根芦苇,它高出水面 1 尺.如果把这根芦苇拉向水池一边的中点,那么它的顶端恰好到达池边的水面.水的深度是多少? 则水深为 (

A.10 尺
B.11 尺
C.12 尺
D.13 尺
C
)A.10 尺
B.11 尺
C.12 尺
D.13 尺
答案:
C
3. (2025·江苏泰州期末)如图,在$Rt\triangle ABC$中,$∠C = 90^{\circ}$,$AB = 5$,$BC = 3$,以点 A 为圆心,适当长为半径作弧,分别交 AB,AC 于点 E,F,分别以点 E,F 为圆心,大于$\frac{1}{2}EF$的长为半径作弧,两弧在$∠BAC$的内部相交于点 G,作射线 AG,交 BC 于点 D,则 BD 的长为 (
A.$\frac{3}{5}$
B.$\frac{3}{4}$
C.$\frac{4}{3}$
D.$\frac{5}{3}$
D
)A.$\frac{3}{5}$
B.$\frac{3}{4}$
C.$\frac{4}{3}$
D.$\frac{5}{3}$
答案:
D
4. 亮点原创 在$\triangle AMN$中,$AM = 17$,$AN = 10$,高$AP = 8$,则$\triangle AMN$的周长为 (
A.48
B.36
C.48 或 36
D.44 或 36
C
)A.48
B.36
C.48 或 36
D.44 或 36
答案:
C
5. (2023·四川泸州)《九章算术》是我国古代重要的数学著作,该著作中给出了勾股数 a,b,c 的计算公式:$a = \frac{1}{2}(m^{2} - n^{2})$,$b = mn$,$c = \frac{1}{2}(m^{2} + n^{2})$,其中$m > n > 0$,m,n 是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是 (
A.3,4,5
B.5,12,13
C.6,8,10
D.7,24,25
C
)A.3,4,5
B.5,12,13
C.6,8,10
D.7,24,25
答案:
C
6. 阅读理解:如果一个正整数 m 能表示为两个正整数 a,b 的平方和,即$m = a^{2} + b^{2}$,那么称 m 为广义勾股数.给出下面的四个结论:① 7 不是广义勾股数;② 13 是广义勾股数;③ 两个广义勾股数的和是广义勾股数;④ 两个广义勾股数的积是广义勾股数.其中正确的是 (
A.②④
B.①②④
C.①②
D.①④
C
)A.②④
B.①②④
C.①②
D.①④
答案:
C
查看更多完整答案,请扫码查看