2025年星推荐涂教材八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年星推荐涂教材八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年星推荐涂教材八年级数学下册人教版》

第21页
1(荆州中考)下列根式是最简二次根式的是( )
A.$\sqrt{\frac{1}{3}}$ B.$\sqrt{0.3}$ C.$\sqrt{3}$ D.$\sqrt{20}$
答案: C
2(廊坊月考)能使等式$\sqrt{\frac{x}{x - 2}} = \frac{\sqrt{x}}{\sqrt{x - 2}}$成立的x的取值范围是( )
A.x≠2 B.x≥0 C.x>2 D.x≥2
答案: C
3(天津模拟)下列说法中正确的是( )
A.若$\sqrt{5} = a$,则$\sqrt{80}$等于6a
B.使$\sqrt{12n}$是正整数的最小整数n是3
C.$\sqrt{0.5}$是最简二次根式
D.计算$3 \div \sqrt{3} \times \frac{1}{\sqrt{3}}$的结果是3
答案: B
4已知$a = \frac{\sqrt{2}}{2}$,$b = \frac{\sqrt{3}}{3}$,$c = \frac{\sqrt{5}}{5}$,则下列大小关系正确的是( )
A.a>b>c B.c>b>a C.b>a>c D.a>c>b
答案: A
5(教材第11页习题16.2第9题改编)已知$\sqrt{2} \approx 1.4142$,则$\sqrt{12\frac{1}{2}}$的近似值为______.(精确到0.001)
答案: 3.536
6计算:
(1)$\frac{5}{4}\sqrt{24} \times \frac{3}{5}\sqrt{6}$;
(2)$\sqrt{\frac{2}{45}} \div (\frac{3}{2}\sqrt{1\frac{3}{5}})$;
(3)$\sqrt{8} \div (3\sqrt{2} \times \sqrt{3})$.
答案: (1)$\frac{5}{4}\sqrt{24} \times \frac{3}{5}\sqrt{6} = \frac{5}{4} \times 2\sqrt{6} \times \frac{3}{5}\sqrt{6} = \frac{5}{2}\sqrt{6} \times \frac{3}{5}\sqrt{6} = \frac{3}{2} \times 6 = 9$.
(2)$\sqrt{\frac{2}{45}} \div (\frac{3}{2}\sqrt{1\frac{3}{5}}) = \sqrt{\frac{2}{45}} \div (\frac{3}{2}\sqrt{\frac{8}{5}}) = \sqrt{\frac{2}{45}} \div (\frac{3}{2} \times \frac{2\sqrt{10}}{5}) = \sqrt{\frac{2}{45}} \div \frac{3\sqrt{10}}{5} = \sqrt{\frac{2}{45}} \times \frac{5}{3\sqrt{10}} = \frac{\sqrt{2}}{3\sqrt{5}} \times \frac{1}{3\sqrt{10}} = \frac{\sqrt{2}}{9\sqrt{50}} = \frac{\sqrt{2}}{9\times 5\sqrt{2}} = \frac{1}{45}$.
(3)$\sqrt{8} \div (3\sqrt{2} \times \sqrt{3}) = 2\sqrt{2} \div (3\sqrt{2} \times \sqrt{3}) = 2\sqrt{2} \div 3\sqrt{6} = \frac{2\sqrt{2}}{3\sqrt{6}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$.
7(九江期末)先将$\frac{\sqrt{x - 2}}{x - 2} \div \sqrt{\frac{x}{x^{3} - 2x^{2}}}$化简,然后选择一个你喜欢的x值代入求值.
答案: $\frac{\sqrt{x - 2}}{x - 2} \div \sqrt{\frac{x}{x^{3} - 2x^{2}}} = \frac{\sqrt{x - 2}}{x - 2} \div \sqrt{\frac{x}{x^{2}(x - 2)}} = \frac{\sqrt{x - 2}}{x - 2} \div \frac{1}{x - 2}\sqrt{\frac{x}{x}} = \frac{\sqrt{x - 2}}{x - 2} \cdot (x - 2) \cdot \frac{1}{\sqrt{x}} = \frac{\sqrt{x - 2}}{\sqrt{x}} = \sqrt{\frac{x - 2}{x}}$(x>2),当x = 4时,原式=$\sqrt{\frac{4 - 2}{4}} = \frac{\sqrt{2}}{2}$.
8(随州中考)已知m为正整数,若$\sqrt{189m}$是整数,则根据$\sqrt{189m} = \sqrt{3\times3\times3\times7m} = 3\sqrt{3\times7m}$可知m有最小值3×7 = 21.设n为正整数,若$\sqrt{\frac{300}{n}}$是大于1的整数,则n的最小值为______,最大值为______.
答案: 3;75
9已知$\sqrt{(9 - x)(x - 7)} = \sqrt{9 - x} \cdot \sqrt{x - 7}$,且x为偶数,求$(1 + x) \cdot \sqrt{\frac{x^{2} - 5x + 4}{x^{2} - 1}}$的值.
答案: 因为$\sqrt{(9 - x)(x - 7)} = \sqrt{9 - x} \cdot \sqrt{x - 7}$,所以$\begin{cases}9 - x \geq 0 \\ x - 7 \geq 0 \end{cases}$,解得7≤x≤9,又因为x为偶数,所以x = 8.则$(1 + x) \cdot \sqrt{\frac{x^{2} - 5x + 4}{x^{2} - 1}} = (1 + 8) \cdot \sqrt{\frac{8^{2} - 5\times 8 + 4}{8^{2} - 1}} = 9 \cdot \sqrt{\frac{64 - 40 + 4}{64 - 1}} = 9 \cdot \sqrt{\frac{28}{63}} = 9 \cdot \sqrt{\frac{4}{9}} = 9 \times \frac{2}{3} = 6$.

查看更多完整答案,请扫码查看

关闭