2025年长江全能学案同步练习册八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年长江全能学案同步练习册八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年长江全能学案同步练习册八年级数学上册人教版》

例4 如图13.2 - 4,已知AD,AE分别是△ABC的高和中线,AB = 6cm,AC = 8cm,BC = 10cm,∠CAB = 90°。试求:

(1)AD的长;
(2)△ABE的面积;
(3)△ACE和△ABE的周长的差。
【思路导析】(1)可根据$\frac{1}{2}AB\cdot AC= \frac{1}{2}BC\cdot AD$求AD的长;(2)$S_{\triangle ABE}= S_{\triangle ACE}= \frac{1}{2}S_{\triangle ABC}$;(3)AC与AB的差即为△ACE与△ABE的周长的差。
【示范解答】(1)$\because S_{\triangle ABC}= \frac{1}{2}AB\cdot AC= \frac{1}{2}×6×8 = 24(cm^{2})$,
而$S_{\triangle ABC}= \frac{1}{2}AD\cdot BC$,
$\therefore\frac{1}{2}AD\cdot BC = 24(cm)$,
$\therefore AD = 4.8(cm)$。
(2)$S_{\triangle ABE}= \frac{1}{2}BE\cdot AD= \frac{1}{2}×(\frac{1}{2}BC)× AD= \frac{1}{4}BC\cdot AD= \frac{1}{4}×10×4.8 = 12(cm^{2})$。
(3)$\because AE$为中线,$\therefore BE = CE$。将△ACE和△ABE的周长分别记为$C_{\triangle ACE}和C_{\triangle ABE}$,则
$C_{\triangle ACE}-C_{\triangle ABE}= AC + CE + AE-(AB + BE + AE)= AC - AB = 8 - 6 = 2(cm)$。
答案:
(1) $\because \angle CAB=90^{\circ}$,$AB=6\,cm$,$AC=8\,cm$,
$\therefore S_{\triangle ABC}=\frac{1}{2}AB\cdot AC=\frac{1}{2}×6×8=24\,cm^2$。
又$\because AD$是$\triangle ABC$的高,$BC=10\,cm$,
$\therefore S_{\triangle ABC}=\frac{1}{2}BC\cdot AD$,即$\frac{1}{2}×10× AD=24$,
解得$AD=4.8\,cm$。
(2) $\because AE$是$\triangle ABC$的中线,
$\therefore BE=\frac{1}{2}BC=\frac{1}{2}×10=5\,cm$。
$\therefore S_{\triangle ABE}=\frac{1}{2}BE\cdot AD=\frac{1}{2}×5×4.8=12\,cm^2$。
(3) $\because AE$是中线,$\therefore BE=CE$。
$\triangle ACE$的周长为$AC+CE+AE$,$\triangle ABE$的周长为$AB+BE+AE$,
$\therefore \triangle ACE$和$\triangle ABE$的周长差为:
$(AC+CE+AE)-(AB+BE+AE)=AC-AB=8-6=2\,cm$。
1. 如图13.2 - 5,在△ABC中,∠1 = ∠2,G为AD的中点,延长BG交AC于点E,F为AB上的一点,CF⊥AD于点H。下列判断正确的是(
D
)

A.AD是△ABE的角平分线
B.BE是△ABD的边AD上的中线
C.AH为△ABC的角平分线
D.CH为△ACD的边AD上的高
答案: D
2. AD,AE,AF分别是△ABC的高、角平分线和中线,则下列说法中,错误的是(
B
)
A.BF = CF
B.∠ACB + ∠CAE = 90°
C.AD≤AE
D.$S_{\triangle ABC}= 2S_{\triangle ABF}$
答案: B

查看更多完整答案,请扫码查看

关闭