2025年长江全能学案同步练习册八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年长江全能学案同步练习册八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年长江全能学案同步练习册八年级数学上册人教版》

例1 计算:
(1)$(a - 2b)(5a + 3b)$;
(2)$(2x - 7y)(3x + 4y - 1)$;
(3)$(x - y)(x^{2} + xy + y^{2})$.
【思路导析】用第一个多项式的每一项与第二个多项式的每一项相乘,再把所得的积相加.
答案:
(1)
$\begin{aligned}(a - 2b)(5a + 3b)&=a\cdot5a + a\cdot3b - 2b\cdot5a - 2b\cdot3b\\&=5a^{2} + 3ab - 10ab - 6b^{2}\\&=5a^{2} - 7ab - 6b^{2}\end{aligned}$
(2)
$\begin{aligned}(2x - 7y)(3x + 4y - 1)&=2x\cdot3x + 2x\cdot4y + 2x\cdot(-1) - 7y\cdot3x - 7y\cdot4y - 7y\cdot(-1)\\&=6x^{2} + 8xy - 2x - 21xy - 28y^{2} + 7y\\&=6x^{2} - 13xy - 2x - 28y^{2} + 7y\end{aligned}$
(3)
$\begin{aligned}(x - y)(x^{2} + xy + y^{2})&=x\cdot x^{2} + x\cdot xy + x\cdot y^{2} - y\cdot x^{2} - y\cdot xy - y\cdot y^{2}\\&=x^{3} + x^{2}y + xy^{2} - x^{2}y - xy^{2} - y^{3}\\&=x^{3} - y^{3}\end{aligned}$
例2 先化简,再求值:
(1)$4x\cdot x + (2x - 1)(1 - 2x)$,其中$x = \frac{1}{40}$;
(2)$(2x - y)(x + y) - 2x(-2x + 3y) + 6x(-x - \frac{5}{2}y)$,其中$x = -1$,$y = 2$.
【思路导析】先去括号,再合并同类项,然后代入求值.
答案:
(1)
首先展开并化简式子:
$4x\cdot x + (2x - 1)(1 - 2x) = 4x^{2} - (2x - 1)(2x - 1) = 4x^{2} - (4x^{2} - 4x + 1) = 4x - 1$,
然后,将$x = \frac{1}{40}$代入化简后的式子:
$4x - 1 = 4 × \frac{1}{40} - 1 = \frac{1}{10} - 1 = - \frac{9}{10}$;
(2)
首先展开并化简式子:
$(2x - y)(x + y) - 2x(-2x + 3y) + 6x(-x - \frac{5}{2}y)$
$= 2x^{2} + 2xy - xy - y^{2} + 4x^{2} - 6xy - 6x^{2} - 15xy$
$= (2x^{2} + 4x^{2} - 6x^{2}) + (2xy - xy - 6xy - 15xy) - y^{2}$
$= - 20xy - y^{2}$
然后,将$x = -1$,$y = 2$代入化简后的式子:
$- 20xy - y^{2} = - 20 × (-1) × 2 - 2^{2} = 40 - 4 = 36$。
例3 甲、乙二人共同计算一道整式乘法:$(2x + a)(3x + b)$,由于甲抄错了第一个多项式中$a$的符号,得到的结果为$6x^{2} + 11x - 10$;由于乙漏抄了第二个多项式中$x$的系数,得到的结果为$2x^{2} - 9x + 10$.
(1)你能知道式子中$a$,$b$的值各是多少吗?
(2)请你计算出这道整式乘法的正确结果.
【思路导析】甲抄错了$a$的符号,则有$(2x - a)(3x + b) = 6x^{2} - (3a - 2b)x - ab$,对比题目中的结果可得$-(3a - 2b) = 11$;乙漏抄了第二个多项式中$x$的系数,则有$(2x + a)(x + b) = 2x^{2} + (a + 2b)x + ab$,对比题目中的结果可得$a + 2b = -9$,进而可求出$a$,$b$的值.
【示范解答】(1)$(2x - a)(3x + b) = 6x^{2} - (3a - 2b)x - ab = 6x^{2} + 11x - 10$.
$(2x + a)(x + b) = 2x^{2} + (a + 2b)x + ab = 2x^{2} - 9x + 10$.
$\therefore \left\{\begin{array}{l} -(3a - 2b) = 11,\\ a + 2b = -9,\end{array} \right.解得\left\{\begin{array}{l} a = -5,\\ b = -2.\end{array} \right.$
(2)原式$=(2x - 5)(3x - 2) = 6x^{2} - 19x + 10$.
答案:
(1)甲抄错$a$的符号,计算$(2x - a)(3x + b)=6x^{2}+(2b - 3a)x - ab=6x^{2}+11x - 10$,得$2b - 3a=11$;乙漏抄第二个多项式中$x$的系数,计算$(2x + a)(x + b)=2x^{2}+(a + 2b)x + ab=2x^{2}-9x + 10$,得$a + 2b=-9$。联立方程组$\left\{\begin{array}{l}2b - 3a=11\\a + 2b=-9\end{array}\right.$,解得$\left\{\begin{array}{l}a=-5\\b=-2\end{array}\right.$。
(2)原式$=(2x - 5)(3x - 2)=6x^{2}-4x - 15x + 10=6x^{2}-19x + 10$。
设$M = (x - 3)(x - 7)$,$N = (x - 2)(x - 8)$,则$M与N$的大小关系为(
B
)
A.$M < N$
B.$M > N$
C.$M = N$
D.不能确定
答案: B

查看更多完整答案,请扫码查看

关闭