2025年点金训练精讲巧练高中数学必修第一册人教版A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年点金训练精讲巧练高中数学必修第一册人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第65页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
用分数指数幂表示下列各式:
(1) $ \sqrt[3]{a} \cdot \sqrt[6]{-a} $($ a < 0 $);
(2) $ (\sqrt[4]{b^{\frac{2}{3}}})^{\frac{2}{3}} $($ b < 0 $);
(3) $ \frac{1}{\sqrt[3]{x (\sqrt[5]{x^2})^2}} $($ x \neq 0 $).
(1) $ \sqrt[3]{a} \cdot \sqrt[6]{-a} $($ a < 0 $);
(2) $ (\sqrt[4]{b^{\frac{2}{3}}})^{\frac{2}{3}} $($ b < 0 $);
(3) $ \frac{1}{\sqrt[3]{x (\sqrt[5]{x^2})^2}} $($ x \neq 0 $).
答案:
(1)$-(-a)^{\frac{1}{2}}$
(2)$(-b)^{\frac{1}{3}}$
(3)$x^{-\frac{3}{5}}$
(1)$-(-a)^{\frac{1}{2}}$
(2)$(-b)^{\frac{1}{3}}$
(3)$x^{-\frac{3}{5}}$
探究活动
例 2 计算下列各式:
(1) $ 2\sqrt{3} × \sqrt[3]{1.5} × \sqrt[6]{12} $;
(2) $ (2\frac{7}{9})^{0.5} + 0.1^{-2} + (2\frac{10}{27})^{-\frac{2}{3}} - 3\pi^0 + \frac{37}{48} $;
(3) $ \frac{(3a^{\frac{2}{3}} b^{\frac{1}{4}}) × (-8a^{\frac{1}{2}} b^{\frac{1}{2}})}{-4\sqrt[6]{a^4} \cdot \sqrt{b^3}} $($ a > 0 $,$ b > 0 $);
(4) $ (\frac{1}{4})^{-\frac{1}{2}} \cdot \frac{(\sqrt{4ab^{-1}})^3}{0.1^{-2} (a^3 b^{-3})^{\frac{1}{2}}} $($ a > 0 $,$ b > 0 $).
例 2 计算下列各式:
(1) $ 2\sqrt{3} × \sqrt[3]{1.5} × \sqrt[6]{12} $;
(2) $ (2\frac{7}{9})^{0.5} + 0.1^{-2} + (2\frac{10}{27})^{-\frac{2}{3}} - 3\pi^0 + \frac{37}{48} $;
(3) $ \frac{(3a^{\frac{2}{3}} b^{\frac{1}{4}}) × (-8a^{\frac{1}{2}} b^{\frac{1}{2}})}{-4\sqrt[6]{a^4} \cdot \sqrt{b^3}} $($ a > 0 $,$ b > 0 $);
(4) $ (\frac{1}{4})^{-\frac{1}{2}} \cdot \frac{(\sqrt{4ab^{-1}})^3}{0.1^{-2} (a^3 b^{-3})^{\frac{1}{2}}} $($ a > 0 $,$ b > 0 $).
答案:
例2
(1)$6$
(2)$100$
(3)$6a^{\frac{1}{2}}b^{-\frac{3}{4}}$
(4)$\frac{4}{25}$
(1)$6$
(2)$100$
(3)$6a^{\frac{1}{2}}b^{-\frac{3}{4}}$
(4)$\frac{4}{25}$
计算:
(1) $ (2\frac{1}{4})^{\frac{1}{2}} - (-2)^0 - (\frac{27}{8})^{-\frac{2}{3}} + (\frac{3}{2})^{-2} $;
(2) $ 2x^{\frac{1}{4}} (-3x^{\frac{1}{4}} y^{-\frac{1}{3}}) ÷ (-6x^{-\frac{3}{2}} y^{-\frac{4}{3}}) $($ x > 0 $,$ y > 0 $);
(3) $ \frac{a^{\frac{4}{3}} - 8a^{\frac{1}{3}} b}{4b^{\frac{2}{3}} + 2\sqrt[3]{ab} + a^{\frac{2}{3}}} ÷ (1 - 2\sqrt[3]{\frac{b}{a}}) \cdot \sqrt[3]{a} $.
(1) $ (2\frac{1}{4})^{\frac{1}{2}} - (-2)^0 - (\frac{27}{8})^{-\frac{2}{3}} + (\frac{3}{2})^{-2} $;
(2) $ 2x^{\frac{1}{4}} (-3x^{\frac{1}{4}} y^{-\frac{1}{3}}) ÷ (-6x^{-\frac{3}{2}} y^{-\frac{4}{3}}) $($ x > 0 $,$ y > 0 $);
(3) $ \frac{a^{\frac{4}{3}} - 8a^{\frac{1}{3}} b}{4b^{\frac{2}{3}} + 2\sqrt[3]{ab} + a^{\frac{2}{3}}} ÷ (1 - 2\sqrt[3]{\frac{b}{a}}) \cdot \sqrt[3]{a} $.
答案:
(1)$\frac{1}{2}$
(2)$x^{2}y$
(3)$a$
(1)$\frac{1}{2}$
(2)$x^{2}y$
(3)$a$
查看更多完整答案,请扫码查看