2026年全效学习中考学练测数学浙江专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年全效学习中考学练测数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年全效学习中考学练测数学浙江专版》

第148页
1. 事件的分类
(1)确定事件:确定事件包括
必然
事件与
不可能
事件。
(2)必然事件:在一定条件下一定会发生的事件叫做必然事件。
(3)不可能事件:在一定条件下一定不会发生的事件叫做不可能事件。
(4)随机事件:在一定条件下可能
发生
,也可能
不发生
的事件叫做不确定事件或随机事件。
答案: 1.
(1)必然 不可能
(4)发生 不发生
2. 概率的概念
(1)定义:把事件发生的可能性大小称为事件发生的概率,一般用 $P$ 表示,事件 $A$ 发生的概率记为 $P(A)$。
(2)各类事件的概率:必然事件发生的概率为
1(或100%)
,不可能事件发生的概率为
0
,随机事件发生的概率介于
0
1
之间。
答案: 2.
(2)1(或100%) 0 0 1
3. 概率的计算
(1)如果事件发生的各种结果的可能性相同且互相排斥,结果总数为 $n$,事件 $A$ 包含其中的结果数为 $m(m\leq n)$,那么事件 $A$ 发生的概率为 $P(A)=$
\frac{m}{n}
。列表和
画树状图
是求简单随机事件的概率的常用方法。
(2)用频率估计概率:在相同条件下,当重复试验的次数大量增加时,事件发生的
频率
就稳定在相应的概率附近。因此,我们可以通过大量重复试验,用一个事件发生的
频率
来估计这一事件发生的概率。
答案: $3.(1)\frac{m}{n} $画树状图
(2)频率 频率
4. 概率的应用
(1)用概率分析事件发生的可能性:概率在日常生活和生产中有着广泛的应用,如用于福利彩票、商品促销、零部件备份、确定保险费用等。事件发生的可能性越大,发生的概率就越

(2)用概率设计游戏方案:在设计游戏规则时,要注意设计的方案要使双方获胜的概率相等;若概率不相等,则可将概率乘相应得分,使游戏公平。
答案: 4.
(1)大
典例 1 [2025·湖北]在下列事件中,不可能事件是(
B
)

A.投掷一枚硬币,正面向上
B.从只有红球的袋子中摸出黄球
C.任意画一个圆,它是轴对称图形
D.射击运动员射击一次,命中靶心
答案: 典例1 B
变式 1 下列成语所描述的事件中,属于不可能事件的是(
D
)

A.水落石出
B.水涨船高
C.水滴石穿
D.水中捞月
答案: 变式1 D
典例 2 [2024·浙江]有 8 张卡片,上面分别写着数 1,2,3,4,5,6,7,8。从中随机抽取 1 张,该卡片上的数是 4 的整数倍的概率为
$\frac{1}{4}$
答案: 典例$2 \frac{1}{4}$
变式 2 - 1 [2025·天津]不透明的袋子中装有 13 个球,其中有 3 个红球、4 个黄球、6 个绿球,这些球除颜色外无其他差别。若从袋子中随机取出 1 个球,则它是绿球的概率为
$\frac{6}{13}$
答案: 变式$2-1 \frac{6}{13}$
变式 2 - 2 如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是
$\frac{3}{8}$

答案: 变式$2-2 \frac{3}{8}$
变式 2 - 3 [2023·杭州]一个仅装有球的不透明布袋里只有 6 个红球和 $n$ 个白球(仅有颜色不同)。若从中任意摸出一个球是红球的概率为 $\frac{2}{5}$,则 $n=$
9
答案: 变式2-3 9

查看更多完整答案,请扫码查看

关闭