2025年多维导学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年多维导学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年多维导学案九年级数学全一册人教版》

第105页

答案: 圆心
@@$AB = CD$ $\angle 1=\angle 2$$AB = CD$ $\overset{\frown}{AB}=\overset{\frown}{CD}$$\overset{\frown}{AB}=\overset{\frown}{CD}$ $\angle 1=\angle 2$
【例1】(人教教材母题)如图,$AB$是$\odot O$的直径,$\overset{\frown }{BC}=\overset{\frown }{CD}=\overset{\frown }{DE},∠COD=35^{\circ }$.求$∠AOE$的度数.

答案: 解:$\because \overset{\frown}{BC}=\overset{\frown}{CD}=\overset{\frown}{DE}$,$\angle COD = 35^{\circ}$,
$\therefore \angle BOC=\angle EOD=\angle COD = 35^{\circ}$.
$\therefore \angle AOE = 180^{\circ}-3\angle COD = 75^{\circ}$.
【变式1】如图,已知$AB,CD$是$\odot O$的直径,$\overset{\frown }{AE}=\overset{\frown }{AC},∠BOD=32^{\circ }$,求$∠COE$的度数.

答案: 解:$\because \overset{\frown}{AE}=\overset{\frown}{AC}$,
$\therefore \angle AOE=\angle AOC$.
$\because \angle AOC=\angle BOD = 32^{\circ}$,
$\therefore \angle AOE = 32^{\circ}$.
$\therefore \angle COE = 2\angle AOE = 64^{\circ}$.
【变式2】如图,$OA,OB,OC$是$\odot O$的半径,$\overset{\frown }{AC}=\overset{\frown }{BC},CD⊥OA$于点$D,CE⊥OB$于点$E$.求证:$AD=BE$.

答案: 证明:$\because \overset{\frown}{AC}=\overset{\frown}{BC}$,
$\therefore \angle AOC=\angle BOC$.
$\therefore OC$平分$\angle AOB$.
$\because CD\perp OA$,$CE\perp OB$,
$\therefore CD = CE$.
$\because OC = OC$,
$\therefore Rt\triangle COD\cong Rt\triangle COE$.
$\therefore OD = OE$.
$\because OA = OB$,
$\therefore OA - OD = OB - OE$.
$\therefore AD = BE$.

查看更多完整答案,请扫码查看

关闭